
23

Specification of Internal Accounting
Controls in a Database Environment *
Graham Gal
Dept. of Accounting, University of Massachusetts, Amherst, Mas-

sachusetts 01003, USA

and

William E. McCarthy
Dept. of Accounting, Michigan State Unioersity, East Lansing,

Michigan 48824, USA

This paper examines the problem of specifying database

security controls in a manner such that the resulting segmenta-

tion of data and the patterns of access rights are consistent with

traditional accounting concepts that govern segregation of du-

ties. The mechanism we use for implementation of these con-

trols in a relational accounting system is that of a “view”

implemented on the Query-by-Example database management

system. A number of examples are presented in detail and some

further aspects of security and integrity constraints are dis-

cussed.

Keywords: Internal accounting controls, separation of duties,

integrity constraints, database views, relational database.

Graham Gal is an Assistant Professor
of Accounting at the University of
Massachusetts in Amherst. His Ph.D.
is from Michigan State University in
Accounting and Information Systems.
His research interests include concep-
tual database models, conceptual con-
trol models, and artificial intelligence
applications in accounting. He has
published a number of articles that
examine particular database imple-
mentations of accounting systems. His
professional experience is in the area

of computer systems design and implementation. He has worked
as both an EDP supervisor and consultant to firms concerning
the development of computer based accounting systems. He is
currently a member of ACM and the American Accounting
Association and was recently selected as a Society of Informa-
tion Management Doctoral Fellow.

* This project was funded by a grant from the Peat, Marwick,

Mitchell Foundation through its Research Opportunities in

Auditing program. The views expressed to not necessarily

reflect the views of the Peat, Marwick, Mitchell Foundation.

A preliminary version of a portion of the work was presented
at the 1982 Midwest meeting of the American Institute for

Decision Sciences.

North-Holland

Computers & Security 4 (1985) 23-32

1. Introduction

Information systems can be characterized along
many different dimensions. One such dimension
pertains to the access rules by which users can
obtain data. At one end of this dimension are
those systems that have open access and at the
other are those systems with closed access.

An open system is one in which the data is
essentially open or available to all user groups.
Data which is not to be used by certain users is
then locked to restrict access. A library would be a
good example of an information system with open
access rules, because all information is generally
available with the possible exception of overdue
and fine information. In contrast to open systems
are those that are characterized as having access
rules which close the information.

A closed system is one in which all the informa-
tion is locked or unavailable to users. Information

that is required by a particular user or group of
users is then unlocked or made available to these
users. Military information systems are examples
of this type of data availability. In these informa-
tion systems the availability of data is dependent
on the security clearance of a particular user, i.e.
information is unlocked to users with appropriate
levels of clearance. Business information systems
can also be characterized as being closed with
respect to access rules (for a good discussion of
general security issues in a database management
system (DBMS) see [4]).

William E. McCarthy is an Associate
Professor of Accounting at Michigan
State University. Professor McCarthy
received his AB degree in Economics
from Boston College and his MBA
Southern Illinois University. His Ph.D.
in Accounting was received from the
University of Massachusetts in 1978.
Professor McCarthy has published a
number of database papers in both the
accounting and the computer science
literature, and he is currently doing
research in areas such as data model-

ing, computer auditing, and expert system construction. He is
presently the principal investigator on research grants received
from the Peat? Marwick, Mitchell Foundation and the Touche
Ross Foundation.

0167-4048/85/$3.30 0 1985, Elsevier Science Publishers B.V. (North-Holland)

24 G. Gal and W.E. McCarthy / Internal Accounting Controls

Business organizations need to process large
amounts of data in order to make decisions that
are pertinent to the success of the business and to
satisfy various reporting requirements. It is also
important, however, for companies to implement
proper internal controls over the use and input of
the data. In most companies, the unlocking, or
granting of access to subsets of the corporate data
is done according to the requirements of sep-
aration of duties, i.e. the access is based on data
subsets which are related to job functions within a
business organization [2].

Under traditional manual types of business data
processing systems, the internal control over
accounting data is effected by exercising physical
control over the source documents, journals,
ledgers and files. That is, the data is kept under
lock and key and is made available to those users
whose job function specifically requires certain
pieces of data. As business organizations become
larger and more complex, the data is stored less in
journals and ledgers and more in computer read-
able storage media [tapes and disc]. Further, in a
database environment, the data is centralized in
corporate data pools with shared access among
large groups of heterogeneous users through the
facilities of a database management system
(DBMS). In such an environment, the overall
model of the firm’s data is called a conceptual

schema. The conceptual schema is then partitioned
into a set of logical views (or external schemas)
which would be consistent with the subset of the
corporate information required for a particular job
function or decision setting.

In order for this corporate data pool to be
useful for accountants, especially as they fulfill
external reporting requirements, it is necessary
that proper internal controls be exerted over the
data. While it is true that certain controls are of
interest to many groups of users, accountants as a
profession are interested in a particular group of
controls that affect the accounting data. When
auditors examine an information system that pro-
duces the data for the external reports, they re-
quire not only that data be restricted to the job
function that needs the data but also that the
assignment of the job functions be carried out with
regard to proper separation of duties [2].

This paper addresses the formulation of views
that would be consistent with particular job func-
tions and the assertion of controls over these views.

The views are formulated in an information sys-
tem which has been specified and modeled in
accordance with the principles of “events”
accounting [9]. In an events system, transaction
data are recorded and stored in disaggregate form,
and the conceptual schema elements related to
accounting consist of objects representing (1) eco-
nomic events, (2) economic resources affected by
the events, and (3) economic agents who par-
ticipate in the events. This type of specification
was selected, because it has been demonstrated
that such a system can supply all of the traditional
accounting requirements as well as filling the needs
for accounting data by non-accountant users (see
especially [5] and [lo]).

The particular DBMS that will be used to dem-
onstrate view construction and access control is a
relational model of a small retail enterprise that
has been implemented using the IBM software
package Query-by-Example (QBE) [7,13]. In our
particular implementation [6], economic resources,
events and agents are modeled as sets of entities
and relationships [8] and are then represented as
base tables or relations in the system. Logical
views are defined as stored queries or programs
run against the appropriate tables. The access to
both views and the underlying transaction data is
controlled by declaring authorization constraints
(also in the form of queries) that govern read,
insert, update, and delete privileges within the
system (for a general discussion of these facilities
in DBMS see [3] and [12]). These authorization
constraints are maintained in the data dictionary
in the table called “AUTHORITY” which is
checked before a query is performed.

The next section of the paper demonstrates the
construction of views that are consistent with sep-
aration of duties and the establishment of controls
over these views in accordance with the job func-
tions. In the section following these examples,
some of the limitations of the QBE implementa-
tion are examined in relation to the requirements
of internal controls.

2. Formulation of Views and Control of Their Use

2.1. Accounts Receivable

Most business organizations make sales to
customers and then collect payments for these

G. Gal and W. E. McCarthy / Internal Accounting Controls 25

sales. For internal control purposes, the initiation
and processing of these transactions are normally
delegated to different job functions or employees
within the firm. These functions are separated so
as to ensure that corporate assets will not be
misappropriated. Such a possibility would exist if
the same employee not only monitored accounts
receivable and was authorized to make adjust-
ments to those accounts, but also was responsible
for entering payments to those same accounts. In
this case the clerk would be able to make an
account adjustment and then change the recording
of payments to conceal the misappropriation of
funds.

These types of problems could be reduced, if
not eliminated, in an events database through sep-
aration of the custodial, recording and operational
duties and by establishing access rights in accor-
dance with the “policy of least privilege” [4, p. 591.
This policy specifies that all users should be
granted access to the smallest subset of the infor-
mation pool that is required for them to perform
their particular job function. As previously men-
tioned, a policy such as this can be implemented
first by determining the information subset the
user requires, then, (in the case of the QBE data-
base) by identifying those base tables as views that
contain the pertinent data and finally by granting
access rights in accordance with these determina-

tions.
Figure 1 illustrates a subset of the relational

database [6] that would be used to define the

CUSTOMER

CUSTOMER) CUSTOMERIt 1 LASTNAME) FIRSTNAME) CREDIT 1 ADDRESS

1 G._CNSS 1 _JONES 1 I _a_,

CUSTOMERSALE 1 CUSTOMERIt 1 TIME 1 DATE

I _CNSS _ Tl _ Dl

SALE I TIME 1 DATE (AMOUNT 1 INVOICE

_ Tl _ Dl ALL._H

SALE PAYMENT 1 SALETIME I SALE DATE 1 PAYMENTTIME 1 PAYMENT DATE

-l 1 _Tl _ Dl

ACCOUNTS RECEWASLE (CUSTOMER NAME I *MOUNT OWED I CREDIT

I. _ JONES I SUM. ALL._,%, 1 _CLl

Fig. 2. Program for Subsidiary Accounts Receivable.

appropriate views (in an internal control sense) for
the customer transactions. On the left is the por-
tion of the enterprise’s conceptual schema that
contains the data elements necessary to produce
the separate functional views on the right. The
conceptual model was formulated using an
Entity-Relationship [l] overview in which each
base relation or QBE table corresponds directly to
either an entity set (box) or a relationship set
(diamond).

Figure 2 illustrates the QBE derivation of the
logical view of subsidiary accounts receivable. The
top four relations (or tables) are base conceptual
elements, (which correspond directly to the boxes
and diamonds of Figure 1) while the bottom rela-
tion is a logical view used to output the data
elements required by the accounts receivable clerk.
The “CUSTOMER NAME” and “CREDIT” col-

SALES VIEW

\I ACCOUNTS
RECEIVABLE VIEW

NAME AMOUNT CREDIT LIMIT

WHITE S500.00 $25,000

CONCEPTUAL MODEL

Fig. 1. Relational Database Subset

26 G. Gal and WE. McCarthy / Internal Accounting Conirols

umns are transferred directly from the “CUS-
TOMER’ relation by placing the example ele-
ments, JONES and CLl, in the appropriate col-
umns of the source (ZCUSTOMER”) and destina-
tion (“ACCOUNTS RECEIVABLE”) tables. The
extension of the “AMOUNT OWED” column is
derived by obtaining a total amount for unpaid
customers sales (ALL. Al).

The total amount-of sales for a particular
customer is found by linking through the relation-
ship table “CUSTOMER SALE” and obtaining
the “TIME” (Tl) and “DATE” (Dl) entries for
all sales to a particular customer (as identified by
the “CUSTOMER NUMBER’ example element

CN88). The query then uses the same “TIME”
and “DATE” data elements to find the “SALE”

table rows (or entries) for the customer, with a
further condition on those sales. The portion of
the query in the “SALE PAYMENT” table
requires that entries in the “SALE” table to be
used for the customer do not also appear as paid
sales, i.e. the query says “give me all the sales for
the customer for which payment has not been
received”. The result in Al will be the amount of
unpaid sales or accountsreceivable. ’

The results of this query are inserted (as speci-
fied by the I. operator) as rows (or entries) in the
“ACCOUNTS RECEIVABLE” table by customer
(as stipulated by the G. or ‘group by’ operator).
After the query has been formulated, it is now
possible to construct the proper authority con-
straint over this particular logical view.

For proper specification of internal controls,
particular subsets of the corporate data pool should
only be available to the employees who require
this view of the data to perform their job function.
Because the QBE system is closed with respect to
access rules, this means it is necessary to unlock
this view to the person who requires the data. In a
typical business organization, the employee who
authorizes further credit sales needs that subset of
the database which identifies those customers who
have reached their credit limit, This person is also
generally responsible for identifying those amounts

’ This is essentially an implementation of a set difference

operation. It works because the relationship between the

sales and the payments is of the type N: 1. This operation
would not work if the relationship was of the type M: N.

Later in the paper there is an example of a similar operation

for this type of relation.

which have become uncollectible and should be
written off as such. For internal control purposes,
this same employee should not have access to
either the sales or payments data in disaggregate
form, because such access would allow the em-
ployee to obtain the payments of accounts which
were written off incorrectly. Figure 3 shows the
procedure that would unlock this view to the em-
ployee whose job function is “CREDIT CLERK”.

This authorization is formulated as a two-step
query and is demonstrated in Figure 3(a). First,
the employee table is accessed to produce the
name of the employee whose job function is
“CREDIT CLERK’; the result was the name
“KATHY.” The second portion of the query says
to insert (I.) into the “AUTHORITY” * table to
the user “KATHY” the ability to print (P.) the
column entries in the table “ACCOUNTS
RECEIVABLE.” This authorization would be
called a static authority constraint because it is
valid only as long as “KATHY” is in the position
of “CREDIT CLERK.” When her job function
changes, it would be necessary to reformulate the
authority constraint with the name of the new
employee in charge of credit. Figure 3(b) shows a
dynamic representation of this authorization which
is not available under the current commercial ver-
sion of QBE but which is more desirable because it
doesn’t change as employees switch job functions.

Another job function that would require access
to data elements from the conceptual schema rep-
resented in Figure 1 concerns the entry of sales
into the database. In business organizations, this
job is generally performed by the order entry
clerk, and it entails adding or recording the oc-
curence of sale events. For internal control pur-
poses, this person should only have access to data
element or tables that must be updated or aug-
mented when a sale occurs. This person should not
have access to payment information, as it would
allow the clerk to neglect to record both the sale
and payment transactions: a situation which al-
lows the misappropriation of funds. Once again, to
allow access to the logical view of the database
required for sales entry, it is necessary to unlock

2 The “AUTHORITY” table is a separate relation that is used
by the system to keep track of constraints that have been

established. Entries to this table are made by the system

when queries are formulated with an I. AUTH as in Figures

3, 4 and 7.

G. Gal and W. E. McCarthy / Internal Accounting Controls 27

ACCOUNTS RECEWASLE (CUSTOMER NAME 1 AMOUNT OWED 1 CREDlT

I AUTH ,P.) KATHY _ JONES -Al I _CLI

AUTHORITY CONsrRAlNT AS ACTUALLY WdPLEMENTED

(Al

EMPLOYEE) EMPX) NAME) C,T” ADDRESS 1 STREET ADDRESS 1 JOB FUNCTION

I -EN I CREDIT CLERK

ACCOUNTS RECEWABLE 1 CUSTOMER NAME 1 AMOUNT OWED 1 CREDIT

I. AUTH ,P.,_ EN 1 -JONES _A3 I _a1

,,“T,,OR,T” CONSTRAlNT AS PART OF A OVERY

IW

Fig. 3. Establishing Authority Constraints on the Accounts

Receivable View.

the portion of the database that must be accessed
to record sales transactions.

Examination of the conceptual schema in Fig-
ure 1 shows that “SALE” is represented as a table
and that it is involved in three relationship tables:
(1) “CUSTOMER SALE” which identifies the

customer that the sale was made to, (2) “SALE
PAYMENT” which relates the sale with the cash
receipt that pays for the sale, and (3) “SALE
LINE ITEM” which identifies the inventory for
the sale. In order to process sales, it is necessary to
add rows to the “SALE” table, the “CUSTOMER
SALE” table, and the “SALE LINE ITEM” table,
but not the “SALE PAYMENT” table. In fact, for
internal control reasons, the “SALE PAYMENT”
table should not be accessible to the person enter-
ing sales transactions.

Because each sale is made to only one party,
each entry in the “SALE” table requires a single
entry in the “CUSTOMER SALE” table. Each
entry will consist of the time and date of the sale
and the number of the customer to whom the sale
was made. For each sale entry there will be “N”
or many entries in the “SALE LINE ITEM” table.
The entries in this table identify the inventory
items that appear on the sale and will consist of
the time and date of the sale, the inventory num-
ber, the quantity of the particular item sold, and
the price actually charged.

When a sale transaction is entered, it would
trigger 3 the system to require that appropriate

3 Triggers are essentially stored programs that are initiated

when certain actions occur in the database. For a more
complete discussion of this concept, see [lo].

entries be made to each of these tables to complete
a sales transaction. Further, in order to maintain
the integrity of the system, it would be necessary

to check that the sum of the extensions for all
“SALE LINE ITEM’ entries equals the total
amount of the sale. The QBE system initially
described in [14] supports this type of integrity
constraint.

Figure 4 shows the formulation of the authority
constraints that would allow the “ORDER EN-
TRY” clerk access to the appropriate data ele-
ments. The authority constraint as actually imple-
mented consists of two separate components and
is shown in part (a) of the figure. The first part
consists of a query on the “EMPLOYEE” table to
find the person whose job function is “ORDER
ENTRY.” The result - employee “ANN” - is
used as part of the query in the second part of the
authority constraint. The second part inserts into
the “AUTHORITY” table (for employee “ANN”)
the ability to insert (I.) entries in the rows of the
“SALE”, “CUSTOMER SALE” and “SALE
LINE ITEM’ tables. Figure 4(b) demonstrates a
situation to be explained in more detail later: the
formulation of this authority constraint in a dy-
namic environment.

Fig. 4. Establishing Authority Constraints on the insertion of
Sales Data.

:s G. Gal and W.E. McCarthy / Internal Accounting Controls

2.2. Accounts Payable for Services

This section demonstrates the formulation of
the view of the database that would be consistent
with the processing of cash disbursements to
vendors that supply services to the company. This
is very similar to the Accounts Receivable example
except that the relationships between the initial
event or transaction, (“Sale” and “General and
Administrative Expense”) and the payment trans-
actions, (“Cash Receipt” for “Sale” and “Cash
Disbursement” for “General Administrative Ex-
pense”) are of different types (see Figures 1 and

5).
The relationship between Sale and Cash Re-

ceipt is many-to-one which means that one cash
receipt from a customer will completely pay for a
group of sales. This allows accounts receivable to
be calculated by looking at the sales that were not
part of the “SALE PAYMENT” table. In con-
trast, the General Administrative Expense-Cash
Disbursement relationship has been identified as
many-to-many. This means that one particular
disbursement will pay for many general and ad-
ministrative expense transactions and one particu-
lar transaction can be paid for by many disburse-
ments, i.e. partial payments are allowed. There-
fore, to calculate accounts payable, it is not suffi-
cient to simply identify those general and admin-
istrative expense items that have not had a pay-
ment related to them, because it might be a partial

GENERAL N
ADMIN
EXPENSE M

CASH
N

DISBURSEMENT

payment. It is now necessary to add amounts of
services received from vendors and subtract the
amounts paid to get a correct total for accounts
payable. Figure 5 shows the portion of the concep-
tual model that is needed to obtain the informa-
tion for this particular subset of the total accounts
payable. The formulation of the view “AC-
COUNTS PAYABLE SERVICE” uses tables de-
rived from this portion of the conceptual model to
accomplish the task.

Figure 6 shows the structure of the query that
provides the authorized employee the logical view
of the database that corresponds to accounts paya-
ble for general and administrative services for each
vendor. The query specifies that the result is to be
presented in the “ACCOUNTS PAYABLE
SERVICE” by “VENDOR #” as stipulated by
the ‘group-by’ operator (G.) on the example ele-
ment VN. In addition the name of the vendor,
identified by the example element SMITH, is also
to be placed in the “ACCOUNTS PAYABLE
SERVICE” table. There are also two calculations
that are being done as part of the query; first the
total amount of general and administrative ex-
penses for each vendor is obtained, and second the
total amount of payments made to the vendor for
these services is derived.

To calculate the total value of the services pro-
vided by a vendor the query uses the relationship
table “GEN ADMIN SUPPLY” to link vendors
(identified by _VN) with the time (_Tl) and date

ACCOUNTS
PAYABLE SERVICE VIEW

IVENDOR# NAME AMOUNT

JO.., 1270000 1 > / 3;

CONCEPTUAL MODEL

Fig. 5. Portion of Conceptual Model.

G. Gal and W.E. McCarthy / Internal Accounting Controls

.~~ ~~ ~~~
VENDOR VENDOR # VENDOR NAME CITY ADDRESS STREET ADDRESS

1 G._VN _ SMITH I

GEN ADMIN SUPPLY VENDOR t SERVICE TIME SERVICE DATE

_VN _Tl _ Dl
_VN _T2 -02

GEN ADMIN EXPENSE SERVICE TIME SERVICE DATE TYPE AMOUNT

_Tl _ Dl I ALL. _ Al

GEN ADMIN PAYMENT SERVICE TIME SERVICE DATE PAYMENT TIME PAYMENT DATE

I _T2 I _ D2 I _T3 I _ D3

CASH DISBURSEMENT PAYMENTTIME PAYMENT DATE CHECK # VOUCHER AMOUNT

I _T3 I _ D3 I I ALL. _ A2

ACCOUNTS PAYABLE SERVICE VENDOR % 1 VENDOR NAME AMOUNT

I. _VN _ SMITH 1 (SUM. ALL._Al -SUM. ALL._A2)

PROGRAM ACCOUNTS PAYABLE SERVICES

29

Fig. 6. Program Accounts Payable Services.

(Dl) of the service transactions they provided.
T-hen these time and date entries are used to select
the vendor entries in the “GEN ADMIN EX-
PENSE” table. For each of the rows (or entries)
that were selected, the figure in the “AMOUNT”
field is accumulated in ALL. Al. This means that
when this portion of the query is executed the total
amount of services provided by a vendor is stored
in the example element ALL. Al.

The second calculation obtains the total amount
paid to the same vendors for the services they
provided (it will not include amounts paid to the
vendor if they also provided inventory for exam-
ple). Once again the “GEN ADMIN SUPPLY”
table is use to identify the time (now T2) and date
(D2) of the services provided by the particular
v&dor (VN). The obtained time and date entries
are now- used in the relationship table “GEN
ADMIN PAYMENT” to identify the time (T3)
and date (D3) entries of the payments that were
made for-the particular “GEN ADMIN EX-
PENSE” transactions. The time and date entries
are then used to obtain the rows of the “CASH
DISBURSEMENT” table corresponding to these
payments. Finally the figure in the “AMOUNT”’
field is accumulated in ALL. A2. The results of
this portion of the query is the-total dollar amount
paid to a particular vendor for general and admin-

istrative services that were provided.
It is now possible to combine the results of

these calculations in the table “ACCOUNTS
PAYABLE SERVICE”. The vendor’s name
(SMITH) and number (VN) fields are inserted
directly from the “VENDOR” table. The entry in
the “AMOUNT OWED” is the sum of the previ-
ous calculations (SUM.ALL. Al-SUM.ALL. A2
or services minus payments)_The result of this
query will be a list, by vendor, of those vendors

ACCOUNTS PAYABLE SERVICE 1 VENDOR c 1 VENDOR NAME 1 AMOUNT

I. AUTH (P.) BILL _VN _ SMITH -Al

,,uTHOA,,-Y CONSTRAINT AS ACTUALLY IMPLEMENTED

(4

EMPLOYEE EMPt 1 NAME) CITY ADDRESS 1 STREET ADDRESS) JOB FUNCTION

-EN PIP SERWCE

ACCOUNTS PAYABLE SERVICE 1 VENDOR X 1 VENDOR NAME AMOUNT

I. AUTH (P.,_ EN _YN I -SMITH -Al

AUT,,OR,TY CONSTRAlNT AS PART OF A QUERY

(8)

Fig. 7. Establishing Authority Constrains on Accounts Payable
View.

30 G. Gal and WE. McCurihy / Internal Accounting Controls

who supply general and administrative services
and the amounts that are owed to them.

The authority constraint for this logical view is
demonstrated in Figure 7(a). The first part re-
quires accessing the “EMPLOYEE” table to iden-
tify the name of the person whose job function is
“AP SERVICE.” The result is employee “BILL”
and the second part of the authority query inserts
(I.) into the “AUTHORITY” table the ability for
“BILL” to print (P.) the entries in the table.

2.3. Section Summary

This section has demonstrated a method of
implementing restriction in data access that would
be consistent with separation of duties as required
by necessary internal controls. This method was
demonstrated in a database environment in which
data was stored in a corporate-wide data pool and
managed with the relational database management
system QBE. The method requires specification of
views consistent with particular job functions and
then assertion of authority constraints.

In the next section some of the limitations of
this implementation and the QBE DBMS are dis-
cussed.

3. Limitations of the Implementation

3.1. Dynamic Authority Constraints

In the three examples used in the paper the
formulation of the authority constraints was static,
i.e., valid only for a certain period of time. In an
actual implementation, this would mean that every
time an employee changes jobs, it would be neces-
sary to identify the authority that person had,
eliminate those occurrences not consistent with the
new function and then insert new authority con-
straints. In the real-time environment of a typical
business, this could cause inefficient use of the
system. In Figures 3(b), 4(b) and 7(b), dynamic
formulations of the authority constraints are dis-
played.

In the static forms, it would only be necessary
to access the “AUTHORITY” table to see if the
attempted query would be allowed; this would not
be the case with the dynamic constraints. The
dynamic constraints are not established for a par-

ticular person (such as ANN, BILL or KATHY).
Instead, they are established for particular job
functions (“CREDIT CLERK”, “ORDER EN-
TRY” or “AP SERVICE”). Thus after the ap-
propriate views had been formulated for certain
functions, authority to use these views would not
need to change as employees change jobs. This
would mean that, before a certain query is al-
lowed, the “AUTHORITY” table would have to
be accessed and then the “EMPLOYEE” table
would have to be checked to identify the employee
performing the particular job function at that time.

The dynamic authority constraints represented
in the figures use the example element EN in
place of a specific name. When the authority con-
straint is checked, the QBE database management
system must access the “EMPLOYEE” table to
find the appropriate name. The use of this exam-
ple element rather than a specific name makes
these formulations dynamic authority constraints.
These types of dynamic constraints were described
in a preliminary paper concerning security and
integrity aspects of the QBE system [14]; however,
they were not part of the commercial package. It is
our opinion that these dynamic constraints would
be a very desirable feature of any future relational
database management system that would be used
in an accounting environment.

3.2. Integrity Constraints

Integrity constraints are conditions of the
database that can be stated apriori to be neces-
sarily true. These constraints ensure that certain
properties of the data will be checked and/or
maintained on an ongoing basis. A good example
of this type of constraint can be demonstrated
using the logical view for sales processing.

As previously mentioned, the employee in
charge of entering sales transactions would invoke
a program or procedure that would provide the
tables necessary to enter sales. This would include;
(1) add a row to the “SALE” table, (2) make an
entry to the “CUSTOMER SALE” table consist-
ing of the customer number and the time and date
of the sale 4 which will link the customer to the

4 This is a method of constructing a relationship between two

entities, i.e. building a separate relation that has the key

fields of the entities as its attributes. In this case, the

customer number is the key of customer and the time and

date attributes serve as the key of the sale transaction.

G. Gal und W. E. McCarthy / Internal Accounting Controls 31

sale, and (3) add a row to the “SALE LINE
ITEM” table to link the sale with the inventory
items of the sale, (which means an entry for each
inventory item). Each entry to the “SALE LINE
ITEM” table will consist of the time and date of
the sale, the inventory number, the price charged
and the quantity of the item. In addition the
extension (price times quantity) is included which
will be used to maintain the condition that the
sum of these extensions equal the amount of the

sale.
Figure 8(a) demonstrates an implementation of

the integrity constraint that would ensure the ac-
curacy of any sale that is added to the database.
The example elements Tl (“TIME”) and Dl
(“DATE”) are used to link the sale with-the
line-item occurrences for that particular sale and
the extensions are stored in Al (.ALL. Al). The
constraint is inserted (I.) in tithe “SALE”>able and
states that the entry in the “AMOUNT” field
must be equal to the sum of the extensions
(SUM.ALL. Al). The constraint is to be checked

only upon insertion [CONSTR(I.)] of entries to the
“SALE” table. Due to the fact that entries to the
“SALE” table require entries to the “SALE LINE

ITEM” table, this amounts to a check anytime an
entry is made to either table.

Fig. 8. Semantic Integrity Constraints

There are other approaches to the specification

of integrity constraints besides that described by
Zloof [14]. In the paper by Theerachetmongkol
and Montgomery [ll], integrity constraints are
specified not only according to the operation which
would initiate the checking of the constraint (I
insert, D delete, A amend or U update) but also
the sequence of the check. The authors describe
three types of constraint checking sequences, per-
petual (PC), pre-operative (BC or BA) and post-
operative (AC, AA or AR). The integrity con-
straint in this example would belong to either of
the operative class of constraints, i.e., it is only
necessary to check the constraint in connection
with a storage operation.

If the constraint were specified as in Figure
8(b), the type of constraint would be a post-op-
erative check (AC). This would tell the system to
perform the storage operation (add a sale transac-
tion to the database) and then check that the sum
of the extensions equals the amount of the sale. If
the constraint is violated, then the error return
would be taken and the message would be dis-
played requesting that corrective action be taken.
However, until the corrective action was taken, the
integrity of the system would be violated, i.e., the
sum of the parts of sales would not equal the sum
of all sales. Therefore a query that used this por-
tion of the data would not necessarily yield correct

responses. This problem could be alleviated by
formulating the constraint in the pre-operative for-
mat (BC).

Figure 8(c) shows a pre-operative (BC) formu-
lation of the previously mentioned constraint. In
this case the constraint is expressed identically to
the post-operative constraint except that the con-
straint would be checked prior to the completion
of any storage operation. By formulating con-
straints in this manner the database will always
contain data that has the predetermined integrity
requirements. The problem with this solution is
that any query on this subset of the data will not
necessarily have access to the most current data
elements. Depending on the cause of the integrity
violation, the correction could require an inves-
tigation that could keep the database from being
current for an unacceptable length of time.

The selection of the type of integrity constraint
[pre- or post-operative] will of course depend on
the nature of the uses for which this particular
subset of the database is required.

32 G. Gal and W. E. McCarthy / Internal Accounting Conirols

4. Conclusion

As the facilities that are used to implement a
particular information system become more com-
plex, the ability for managers to personally exert
control over the data declines dramatically. This
inability to control the data is particularly a prob-
lem in the shared data environment of a DBMS. If
these DBMS are to be used in a business environ-
ment the system must become part of the process
that controls the access to, and integrity of, the
data.

This paper has demonstrated an implementa-
tion of authority constraints using the data dict-
ionary facilities of a relational DBMS, Query-by-
Example. The constraints were formulated to cor-
respond to information subsets that are required
by particular job functions within a typical busi-
ness organization. The paper went on to discuss
the formulation of integrity constraints on this
same subset of data.

The paper suggests two avenues for future work.
The first direction concerns implementation of
these types of constraints using other dictionary
facilities that are available. The other direction
would be to look at internal controls not at the
implementation level, but at the level of the overall
data model of the firm. This would allow all of the
constraints on the data to be expressed in the
overall semantic representation of the enterprise.

References

[l] P.P. Chen, “The Entity-Relationship Model - Toward a

Unified View of Data.” ACM Transactions on Database

Systems. Vol. 1 (March 1976) pp. 9-36.

[2] B.E. Cushing. Accounting Information Systems and Busi-

ness Organizations Reading, MA.: Addison-Wesley Pub-

lishing Co., 1982.

[3] C.J. Date. An Introduction to Database Systems (3rd ed.)

Reading, MA.: Addison-Wesley Publishing Co.. 1977.

[4] E.B. Fernandez, R.C. Summers and C. Wood. Database

Security and Integrity. Reading, MA.: Addison-Wesley

Publishing Co., 1981.

161

[71

Fl

[5] G. Gal and W.E. McCarthy. “Declarative and Procedural

Features of a CODASYL Accounting System.” in

Entity-Relationship Approach to Information Modeling and

Analysis. P.P. Chen ed. Amsterdam.: North-Holland Pub-

lishing Co., 1983.

G. Gal and W.E. McCarthy, “Operation of a Relational

Accounting System.” Working Paper, Michigan State Uni-

versity, September 1983.

IBM, Query-by-Example Program Descrrptron /Operation

Manual. SH20-2077-2. (October 1980) White Plains, N.Y.
W.E. McCarthy. “An Entity-Relationship View of
Accounting Models.” The Accounting Review, Vol. 54 (Oc-

tober 1979) pp. 667-686.

W.E. McCarthy. “Multidimensional and Disaggregate
Accounting Systems: A Review of the ‘Events’ Accounting

Literature.” MAS Communication. Vol. 5 (July 1981) pp.

7713.

[91

1101

1111

1121

[I31

[I41

W.E. McCarthy. “The REA Accounting Model: A Gener-

alized Framework for Accounting Systems in a Shared

Data Environment.” The Accounting Reuiew. Vol. 57 (July

1982) pp. 554-578.

A. Theerachetmongkol and A.Y. Montgomery. “Semantic

Integrity Constraints in the Query-by-Example Data Base

Management Language.” The Australian Computer Jour-

nal, Vol. 12 (February 1980) pp. 28-42.

J.D. Ullman. Principles of Database Management. Potomac,

Maryland: Computer Science Press, Inc., 1983.

M.M. Zloof. “Query by Example.” Proceedings of the

NCC (May 1975).

W.E. McCarthy “Security and Integrity Within the Query-

by-Example Data Base Management Language.” IBM Re-

search Working Paper, RC6982, February 1978.

