
REACH: Automated
Database Design
Integrating First-Order
Theories, Reconstructive
Expertise, and
Implementation
Heuristics for Accounting
Information Systems
Stephen R. Rockwell1* and William E. McCarthy2
1The University of Tulsa, USA
2Michigan State University, USA

Abstract This paper describes the integrated use of different knowledge types in an
automated software engineering tool called REACH. These types include: (1) a
first-order domain theory called the REA accounting model, (2) reconstructive
expertise gleaned from textbooks on accounting system design in a bookkeeping
environment, and (3) implementation compromise heuristics derived from the
design experience of database designers. This tool aids an enterprise database
analyst in the conceptual design stages of view modeling and view integration.
Copyright 1999 John Wiley & Sons, Ltd.

INTRODUCTION

Early expert systems concentrated to a large
degree on the modeling of human cognitive
processes. This means that the knowledge
structures embedded in such systems were
primarily restricted to those that directly emu-
lated the heuristic methods by which a human
decision maker would attempt to control the
complexity involved in solving a given prob-
lem. By contrast, more recent systems attempt

* Correspondence to: Stephen R. Rockwell, School
of Accounting/Department of MIS, 313 BAH, The
University of Tulsa, Tulsa, OK 74104-3189, USA.
E-mail: steve-rockwell!utulsa.edu

CCC 1055-615X/99/030181-17$17.50
Copyright 1999 John Wiley & Sons, Ltd.

International Journal of Intelligent Systems in Accounting, Finance & Management
Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

to incorporate knowledge structures of both
the heuristic and non-heuristic types into their
consultation sessions. As many AI professionals
had predicted in the 1980s, knowledge-based
systems have become more successful as they
have migrated away from ‘single-subject emu-
lation’ into integrated components of larger
computer systems.

This paper describes the integrated use of
different types of expertise in a computer-aided
software engineering (CASE) tool for account-

Contract grant sponsor: Department of Accounting
at Michigan State University
Contract grant sponsor: Ameritech
Contract grant sponsor: Arthur Andersen & Co.

ing system design. This system is called
REACH, and initial discussion of its proposed
functioning is found in McCarthy and Rockwell
(1988). REACH is designed to aid in the process
of database design in general and in the sub-
processes of view modeling and view inte-
gration in particular. To do this, REACH uses
three kinds of accounting domain knowledge:

! First-order theories of accounting derived
from conceptual (i.e. semantic) analysis of
accounting practice and accounting theorists

! Reconstructive expertise of accounting sys-
tem implementers largely derived from text-
book descriptions of ‘typical’ bookkeeping
systems

! Implementation heuristics for construction of
events-based accounting systems derived
from the database design experiences of the
authors in such work.

For its consultation process, REACH must
also avail itself of both methods knowledge (of
data modeling, normalization, structured analy-
sis, etc.) and target system knowledge (of poss-
ible hardware restrictions, for example). How-
ever, such use is described elsewhere (e.g.
Loucopoulos and Harthoon, 1988; Ryan, 1988;
Dogac et al., 1989; Lloyd-Williams and Beynon-
Davis, 1992; Loucopoulos and Theodoulidis,
1992; Storey and Goldstein, 1993; Storey, 1993),
and we concentrate here on the integrated use
of the different types of accounting domain
knowledge in REACH. While Storey et al. (1997)
use domain-specific knowledge structures in
database design work, their structures were
developed from a small number of example
cases, as opposed to our use of what we refer
to as reconstructive domain knowledge. Their
domain structures also lack the unifying meta-
model that our use of REA theory provides.

The remainder of this paper is organized as
follows. The next section describes the process
of structured database design in an accounting
context and the REACH approach to problem
solving in this arena. The third section
describes in more detail the design task and
the different types of domain knowledge enu-
merated above. The fourth section discusses
the use of such knowledge in solving design
problems and in making decisions about

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

182 S.R. ROCKWELL AND W.E. McCARTHY

implementation compromise. The fifth section
describes the current implementation of
REACH, and the sixth section ends the paper
with a summary and discussion of future direc-
tions suggested by this research.

DESIGN OF SHARED ENVIRONMENT
ACCOUNTING SYSTEMS

Virtually all business enterprises have account-
ing information systems that model the inflow
and outflow of economic resources (like inven-
tory and cash) and that allow periodic compi-
lations of company profitability. In their most
primitive forms, such systems comprise account
classifications and bookkeeping conventions
that accommodate tracking of financial trans-
actions. In their more modern forms, these sys-
tems consist of various computer files and pro-
gramming modules, such as general ledger
systems, payroll systems, accounts-receivable
systems, etc.

In a shared data environment in which non-
accounting decision makers need common
access to economic transaction information,
many computerized accounting and bookkeep-
ing systems are found wanting, and the need
becomes apparent for a process that will
redirect the design of these systems toward a
database orientation. Such a design process is
described in McCarthy et al. (1989) and in
Geerts et al. (1996), and the embedding of its
knowledge structures in a CASE tool is the goal
of the REACH implementation. A summary of
the accounting systems design process used
here is illustrated in Figure 1 and explained
below.

Accounting information system design begins
with a desire to model the economic events,
resources, and agents of a given business
enterprise, and it ends with a specified and
implemented computer system. Not all aspects
of the business enterprise need to be captured
in the formal information system, and many
characteristics actually have little or no decision
or accountability use (for example, the number
of bricks in a company’s headquarters building
or the romantic interludes among its
employees). Additionally, there will be many

Figure 1 Accounting information system development

characteristics that are certainly desirable from
a decision usefulness perspective (and hence,
desirable components of an enterprise infor-
mation system), but which will prove later to
be incapable/infeasible of being measured or
represented (for example, the productivity-
enhancing skill level of certain employees). The
information system design and implementation
process is then one of compromise (what to
model in the system and what to leave out) as
it proceeds from start to finish.

In REACH, we are using a systems develop-
ment methodology adapted from structured
analysis (Yourdon, 1991) and conceptual data-
base design (Lum et al., 1979, Batini et al.,
1992). The requirements definition phase of this
methodology begins the process of implemen-
tation compromise by extracting both old and
new requirements from potential users and by
documenting those requirements formally
within a structured analysis CASE tool.

As illustrated in Figure 1, we then proceed
into conceptual database modeling, a phase in
which we attempt to temporarily suspend the
process of implementation compromise through
the use of first-order accounting theories and
reconstructive enumeration of ‘typical’ system
elements. At this stage of database design, we

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

183REACH

are most interested in producing a set of indi-
vidual user views or external schemas. A user
view typically provides details of some subset
of the database in which a particular group of
users is interested. User views frequently focus
on transaction processing activities, such as
tracking sales transactions, or on forms used
for exchanging information among people.
Examples of such forms include information
output, such as aged accounts receivable
reports or customer billing statements, and data
input, such as purchase orders or employee
timecards.

After all the external schemas have been pro-
duced, we enter the next phase of view inte-
gration. The output of this phase includes the
conceptual schema, which combines and rec-
onciles the external schemas into a global descrip-
tion of the whole database. In this and later phases
proceeding to final implementation, implemen-
tation compromise resumes its central focus. Some
of REACH’s knowledge structures are used here,
either by dictating directions for leaving out
certain types of conceptual components of events-
based accounting systems or by directing the
resolution of view integration conflicts.

The actual implementation domain of
REACH is illustrated in Figure 2. Our tool

works primarily in the second step—conceptual
design—of the four-step database design pro-
cess outlined first by Lum et al. (1979) and
extended by Batini et al. (1992). We assume
that requirements definitions are completely
finished with a CASE tool and handed to us
in the form of data flow diagrams (DFD) and
a data dictionary. REACH output consists of
an integrated schema that is given to an
implementation team for translation into a
particular DBMS environment during the
implementation design phase. Some of the
compromise necessary in this ‘translation’
phase may be accomplished during view inte-
gration, as the knowledge necessary for such
compromise already exists within REACH.
Thus, in Figure 2, the dashed line marking the
boundaries of our system encompasses part of
the target system knowledge and implemen-
tation design structures.

As mentioned, three kinds of accounting

Figure 2 The REACH domain

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

184 S.R. ROCKWELL AND W.E. McCARTHY

knowledge structures are utilized within
REACH, and it is to this utilization that we
next turn.

DESIGN TASK AND DOMAIN KNOWLEDGE
REPRESENTATION

Design Task
REACH aids the database design steps of view
modeling (or view design) and view inte-
gration. View modeling takes a list of data
elements (from a DFD data store or a potential
user ‘wish list’) and expresses them in the form
of a conceptual Entity-Relationship (E-R)
schema (Chen, 1976). A view consists of the
actual data elements needed for a particular
computer program to be run or for a particular
decision to be made. These views ignore details
of the physical storage structures that will be

Figure 3 The REA accounting model
(source: McCarthy, 1982)

used eventually to implement the database.
They instead focus on the entities of interest
(resources, events, and agents), data types
assigned to the entities, relationships among
the entities, and constraints placed upon the
entities and relationships. Judgments involved
in view modeling include the identification or
reconstruction of entities, relationships, and
attributes within the data set and correct speci-
fication of them in E-R form.

View integration takes a series of modeled
views and iteratively combines them into one
integrated E-R schema for the entire business
enterprise. Judgments involved in this process
include identification of combination and/or
integration bases for various views, decisions
either to omit some previously identified
elements or to add some previously unidenti-
fied elements, and resolution of integration con-
flicts. Such conflicts occur when separate user
groups model the same real world objects of
interest in different ways. For example, the
same entity might be assigned different names,
an entity might be modeled using different
data types, or a relationship may be given
different constraints. Batini et al. (1986) provide
a comprehensive discussion of integration con-
flicts and integration methodologies, and we
discuss integration conflicts later in this paper.

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

185REACH

In a certain way, view modeling and view
integration can be conceived as analogous to
the process of combining certain chemicals
(with known desirable properties) into a com-
pound that will meet a variety of needs in an
integrated fashion. The first step involves cor-
rect specification of the individual components,
while the second involves correct identification
of inconsistent or superfluous elements and a
process for seamless integration.

Knowledge Representation
Within REACH, three distinctly different types
of accounting knowledge are brought to bear
on the conceptual modeling process. We now
discuss each at greater depth.

First-order Theories of Events Accounting
Systems
Our starting point for the conceptual design of
shared environment accounting systems is the
REA model illustrated in Figure 3 (McCarthy,
1982). This ‘accounting event template’ was
derived by semantic analysis of current practice
and its component names appeal to the ideas
of well known accounting theorists such as Ijiri
(1975) and Mattesich (1964). Its model name is
derived from the essential components of the

transaction template, which are its economic
resources, events, and agents. The REA frame-
work derives from fundamental accounting
principles, such as ‘accountability’ and
‘duality’, that characterize the tracking of econ-
omic events in a business enterprise. REACH is
a software system designed to augment CASE
support for REA-oriented accounting system
design, and it uses REA theory in each of the
database design stages of view modeling and
view integration. The use of an REA metamodel
provides leverage both in the actual modeling
consultation and in the acquisition and mode-
ling of reconstructive domain knowledge,
described later in this paper.

A view modeling consultation session in
REACH will be structured around a specific
instance of an REA event type. Users are
guided in their interpretation of view elements
by this template, and they are also encouraged
to use their own judgment in augmenting or
reorienting a given set of data names. In a
sense what they are asked to do (among other
things) is to interpret the situation in front of
them as a specific instance of a known constel-
lation of entities and relationships. What these
users will often find is that a given set of data
elements is incomplete and misinterpreted in
light of this theoretical framework because of
unapparent implementation compromise. In
essence, what is happening is that REACH
attempts to identify the correct REA event tem-
plate for a given user view. Once that is known,
the user view is compared to a full-REA stereo-
type for the events being modeled. From that
comparison, REACH can identify potentially
missing objects, make recommendations about
data types, or reconcile differences in naming
conventions.

During view integration, the REA template
is used to guide model synthesis by identifying
‘intersection points’ between views. For
example:

! Every increment event needs to be paired
with at least one decrement event via a
duality relationship and vice versa; therefore,
a view of sales processing is linked to a view
of remittance advice processing via a Cash
Receipt pays for Sale interpretation.

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

186 S.R. ROCKWELL AND W.E. McCARTHY

! Every resource must have both inflow and
outflow events; therefore, sale processing in a
retail enterprise could be linked to purchase
processing via a Purchase is inflow to Inven-
tory has outflow of Sale interpretation.

! Economic units are arranged in responsibility
hierarchies; therefore, a view of sale trans-
action processing could be linked to a
regional sales report view via a Salesperson
is assigned to Sales Region interpretation.

Reconstructive Expertise of Accounting
System Implementers
In the bookkeeping days of fifty years ago,
part of an accountant’s expertise would be the
knowledge needed to design a chart of accounts
(i.e. a declarative classification structure) and a
set of bookkeeping procedures for a particular
company. These accountants either carried in
their head or had library access to a ‘journal
and ledger template’ for a particular type of
business enterprise. Thus for instance, a good
accountant would be able to identify an
adequate chart of accounts for a particular
store, for a particular funeral home, for a parti-
cular hospital, etc. before he or she even visited
the actual establishment. Quite obviously, this
framework would be tempered and altered by
actual experience, but it would serve an invalu-
able role in summarizing the past experiences
of knowledgeable experts in the field and in
preventing sins of omission (as opposed to dis-
couraging sins of commission) in accounting
system design.

Reconstructive expertise of the type
explained above is built into REACH. For a
given set of industry types, we are using the
Encyclopedia of Accounting Systems (Plank and
Plank, 1994; Pescow, 1976), which provides
managerial advice, sample chart of account
structures, and representative bookkeeping pro-
cedures by industry classification. We transform
this advice into entity-based enterprise models
and use them during view integration in lieu
of the ‘management view’ starting point often
advocated by database theorists. This means
that the industry entity template becomes the
overall conceptual schema to start with and
that view integration proceeds by adding indi-
vidual modeled views onto it. We call this

management view the management schema, or
m-schema. There are certainly definite needs
for this industry template in the view modeling
process, but we are deferring that implemen-
tation to a later prototype stage.

Implementation Heuristics for Events-Based
Accounting Systems
A full events-based accounting system is a
theoretical ideal that realistically would not be
implemented. Nobody would keep full event
histories perpetually unless storage techno-
logies become absolutely costless and methods
for abstracting from detail become absolutely
painless. Event system implementation involves
essential compromise (i.e. throwing both inten-
sional and extensional database features away).
Since this process is inevitable, we are
attempting to provide in REACH heuristic
guidance gleaned from our own considerable
experience in events-based accounting
implementations.

The next section discusses in greater detail
the use of these three types of knowledge in
resolving some conceptual modeling problems
and in making decisions regarding implemen-
tation compromise.

INTEGRATION CONFLICTS AND
IMPLEMENTATION COMPROMISE

In the previous section, we indicated that
accounting knowledge played a major role
within view integration by identifying intersec-
tion points among views. That accounting
knowledge came primarily from the principles
level via use of REA theory. We also indicated
that reconstructive expertise was used for con-
structing the m-schema, which was used as a
starting point for the integration process.
Within the integration process itself, there are
two other areas in which this knowledge can
be used: (1) when trying to resolve conflicts
between a new user view and the existing
m-schema, and (2) when modeling common
implementation compromises.

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

187REACH

Integration Conflicts
The process of conceptual modeling is complex,
and considerable research activity has been
devoted to it. Some of the research efforts focus
on creating knowledge-based systems (KBSs) to
aid in conceptual modeling tasks. While a num-
ber of systems of varying complexity have been
developed in both academic and commercial
settings, in general they rely heavily upon the
human user during the view integration phase.
To a greater or lesser extent, these systems ‘fail’
when attempting to resolve automatically some
of the problems of view integration, and conse-
quently they must ‘ask’ the user to do much
of the work. Table 1 defines the most common
integration conflicts that cause ‘failures’ in such
integration systems.

Through its use of accounting knowledge,
REACH provides increased problem-solving
assistance on several levels. In some cases, inte-
gration conflicts can be resolved by reference to
internal knowledge structures, without further
input from the user. For example, an REA
template for the Sale event would typically
have a separate entity for Employee. That
entity is one about which we would normally
wish to capture a variety of information (name,
address, Social Security Number, etc.). In
addition, that entity participates in numerous
business events, filling, at various times, the
roles of Economic Unit and Economic Agent.
If a user view contained a Sale event with no
Employee entity, but with an Employee# attri-
bute, REACH would instantiate an Employee
entity. The user would be notified as to why
this occurred.

In other cases, conflicts can be resolved by
querying the user for accounting or business-
oriented data. This is an improvement over
many modeling systems that query the user
in database terms. REACH requests data in
the business terms a user is more likely to
understand, and thus it can lessen the need
for a systems analyst to act as an intermedi-
ary. This eliminates one possible source of
communication errors, as the user’s knowl-
edge of the business can be acquired directly
from that specific person and need not be
‘translated’ through an intermediary, who

Table 1. Integration conflicts

Type Conflict Description

Naming Homonym The same name is used for two different concepts, giving rise to
inconsistency unless detected. For example, merging two entities of this
type in the integrated schema would result in producing a single entity for
two conceptually distinct objects.

Synonym The same concept is described by two or more names. Keeping each
name modeled as a distinct entity in the integrated schema would result in
modeling a single object by means of multiple entities.

Structural Type conflict The same concept is represented by different modeling constructs in
different schemas. For example, a class of objects may be represented as
an entity in one schema and as an attribute in another schema.

Dependency A group of concepts are related among themselves with different
conflict dependencies in different schemas. For example, a relationship between two

entities may be shown as 1:1 in one schema, but m:n in another schema.
Key conflict The same concept is assigned different keys in different schemas. For

example, SS# and Emp id may be the keys of Employee in two component
schemas.

Behavioral The same class of objects is assigned different insertion/deletion policies in
conflict distinct schemas. For example, in one schema a department may be

allowed to exist without employees, whereas in another, deleting the last
employee associated with a department leads to the deletion of the
department itself.

Source: Rockwell (1992) adapted from Batini et al., (1986).

would often be less familiar with the prob-
lem domain.1

Implementation Compromise
In its most pure form, an REA-based account-
ing system designed as a relational database
would implement each entity and relationship
as a separate table. In addition, full event his-
tories would be kept forever, and many double-
entry accounting artifacts would be material-
ized with procedures rather than be directly
represented in the system’s tables. For example,
rather than store accounts receivable balances,
those numbers would be calculated (when
needed) as the imbalance between sales to a
particular customer and cash receipts from that
customer. Additionally, many of the normal

1 For example, a typical system might point out a
conflict in structural constraints between two
schemas modeling the Sale and Payment events. A
business user might not fully understand the concept
of structural constraints and thus be uncertain as to
the correct resolution. REACH would instead ask
about how the company handles payments for sales,
and use the response to identify the correct struc-
tural constraints.

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

188 S.R. ROCKWELL AND W.E. McCARTHY

period expense (e.g. advertising expense)
would be modeled and implemented as two
(as opposed to one) economic events with one
event showing the acquisition of a resource,
and the other showing the consumption of that
resource (McCarthy, 1982, p.573).

There are many reasons why we would not
expect to see such an implementation with tech-
nology of the present or near future. Costs of
data storage and processing, with the attendant
time delays for processing vast quantities of
data, prohibit such a system from an efficiency
standpoint. From an accounting decision-
making perspective, some of the data would
be of limited value. For example, if expendi-
tures for insurance are primarily relevant as
part of quarterly or annual reports, trying to
track insurance expenditures as separate asset
acquisition and use events provides no
incremental decision value beyond current
treatment of those expenditures as period
expenses. It should also be noted that there
exist many non-database accounting systems,
and such systems might require modification
of the pure REA-based conceptual model

beyond the compromises just suggested. For
example, in a traditional file-oriented appli-
cation with multitudes of sequential processing,
the types of fully normalized data structures
that occur in a relational database system
would probably impose tremendous storage
and processing inefficiencies on the user. These
various pressures for design compromise may
be categorized into two major groups: (a)
compromises based upon information use
characteristics, and (b) compromises based
upon physical implementation characteristics.
Each of these is discussed in turn in the next
two sections.

Information Use Compromise Heuristics
Figure 4 shows examples of four types of infor-
mation use compromise heuristics. Such
compromise is based upon the underlying con-
cept that an accounting system should store
data and produce information that has rel-
evance to the users of that system’s outputs.
The business attributes that have such relevance
will vary from company to company. The fol-
lowing explanations will clarify the heuristics
of Figure 4 where the proposed compromises
are depicted with dotted lines.

! Temporal aggregation of event histories. In
cases where detailed transaction histories are
not needed, the effect of flow events can be
aggregated in attributes of economic
resources or agents. Faced with the
implementation of the data model in Figure
4(a) for example, an implementer could
choose to not keep cash receipts and cash
disbursements as separate entities and to
only aggregate their effects in cash accounts
(on the amount attribute, for example). Such
a decision would presume no decision use-
fulness to the event histories, a situation that
might not be warranted in an enterprise
using certain types of quantitative cash man-
agement models.

! Representation and use of a subset or super-
set. In many decision cases, it makes more
sense to maintain and use entities at either
a more specific or a more general level than
an REA interpretation might specify. Two
examples of such use are portrayed in Figure
4(b). If sale orders become either filled or

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

189REACH

unfilled depending upon inventory circum-
stance, most of the decision usefulness
accrues to the unfilled subset. Therefore, only
that specific subset (unfilled order) would be
declared and used. In a similar fashion, cer-
tain kinds of companies might not need to
view sales and cash receipts as different
entities, only as revenue cycle transactions
that relate to a certain customer whose status
is determined with periodic batching of this
transaction data. That is, there may be no
usefulness in modeling the resource outflow
event separately from the resource inflow
event where they can instead be modeled
with one superset construct and coded as
different transaction types.

! Substantive non-implementation or pro-
cedural-declarative tradeoffs for entity sets.
The maintenance of some REA components
can be dismissed on a substantive basis if
there is no decision need for their data. Cer-
tain firms might not need inside agents, for
example, if they don’t track financial
responsibility for costs or revenues. Similarly,
if the decision use for certain types of
relationship connections is infrequent, it
might make more sense to materialize those
connections procedurally rather than main-
taining them declaratively. In Figure 4(c), the
pays for relationship might be dismissed
substantively if the company tracks payables
only by amount (i.e., a balance-forward
system). Similarly, the party to relationship
is one that could be materialized monthly
from the rest of the intact structure if there
was no more compelling use for its mainte-
nance.

! Conceptual congruency of closely related
entities. Two objects can be defined as con-
ceptually congruent if they always occur
together, or in data modeling terms, if they
exhibit the structural constraint pattern—
(1,1)-(1,1)—shown in Figure 4(d). In such
cases, a common compromise is to fold the
multiple entities into one. For example, a
company that received all of its cash receipts
instantaneously from sales would not need
separate representations for these two event
sets.

Figure 4 Information Use compromise heuristics

Within REACH, heuristic guidance of the
type described above may be provided in two
ways. First, diagnostic questions can be posed
to the user after view integration. The answers
to these questions would guide implementation
stage suggestions. Second, knowledge of these
heuristics can be embedded in the view mode-
ling and integration stages. Such knowledge
can be used to identify instances where past
system designers have made implementation
compromises that might or might not be war-

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

190 S.R. ROCKWELL AND W.E. McCARTHY

ranted in present circumstances (i.e. reverse
engineering of past systems).

Physical Implementation Compromise
Heuristics
Another type of compromise arises from the
nature of the eventual physical implementation
of the accounting system. The discussion here
is directed toward a traditional file-oriented
implementation. However, similar discussions
could be made for accounting systems using a

non-relational database model, such as net-
works or hierarchies. In addition, there are
modifications to the relational implementation
that may also arise from certain physical
implementation (efficiency) characteristics. For
example, in a relational database implemen-
tation, we might not choose to instantiate every
relationship in our conceptual schema separ-
ately. Consider the case where a relationship
has a connection cardinality of 1-to-1 or 1-to-n
(Chen, 1976). For efficiency purposes, it usually
is better not to instantiate the relationship with
a separate table if participation of the n entity
is required in the relationship or if the relation-
ship is heavily loaded (i.e. close to 100%
participation). Instead, the primary key of one
entity could be added as an attribute to the
other entity.

Figure 5 shows examples of three types of
physical implementation compromise heuristics
for a file-based implementation of an REA-
modeled accounting system. Such compromise
is based upon the underlying concept that an
accounting system can be implemented in a
variety of hardware/software configurations,
each of which will have specific performance
characteristics and cost. These characteristics
may suggest certain types of compromise that
can be implemented to an REA-oriented con-
ceptual schema for the sake of efficiency. The
following explanations will clarify the heuristic
depictions of Figure 5.

! Between-Cycle, Resource-Oriented Events.
For these types of events, the item of primary
interest is a resource that connects events
from different accounting cycles. In this case,
the resource becomes a good candidate for
a master file, with the flat part of the file
being the relevant attributes of the resource
and the repeating groups of the file being
the attributes of the actual transactions
(events). For example, with Raw Material,
we may be most interested in being able to
determine the value of and changes to the
resource, so we could instantiate a master
file with flat fields like RM-product# and
quantity-on-hand and with repeating fields
like receiving report# (transfer in) and requi-
sition# (transfer out).

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

191REACH

! Within-Cycle, Agent-Oriented or Claim-
Oriented Events. This compromise is similar
to the between-cycle events described above,
but the primary entity of interest is the agent,
and the corresponding master file is based
on the data components of that agent. For
example, in the case of tracking acquisition
cycle events, the flat part of the file would
be vendor attributes including address and
payables-balance and the repeating groups
would represent individual purchase and
cash payment transactions. Additionally,
sometimes the imbalances between same-
cycle events become master-file candidates
themselves, such as happens with debt or
equity master files. The judgements involved
in treating these imbalances as base objects
(explained in McCarthy, 1982, p.571) are
embedded in the compromise heuristics.

! Limited Dimension Resources and Events.
In this case, the entities of interest are econ-
omic resources and events where most of the
information to be maintained about either
type of object is financial in nature (such as
a cash balance or a summarized total for
a period expense). These limited dimension
entities become good candidates for records
in a general ledger master file, with facet
codes being used to track non-monetary
dimensions such as organizational unit or
time period.

In the cases of all the physical implemen-
tation heuristics described immediately above,
where the target implementation platform is a
file-oriented environment, it should be apparent
that the process of implementation compromise
can become quite severe, leading to uncon-
trolled redundancy and/or significant infor-
mation loss. In REACH, we intend that these
disbenefits be flagged and analyzed before the
heuristics are used.

CURRENT IMPLEMENTATION OF REACH

The first (partial) implementation of the
REACH system is a KBS named REAVIEWS
(REA View Integration with Expertise from
Written Sources—see Rockwell, 1992). It uses

Figure 5 Physical Implementation compromise heuristics

the four levels knowledge depicted in Figure 2
in the design ask of view integration. REA-
VIEWS demonstrates the additional problem-
solving ability provided by the combination of
such knowledge domains. The application of
database design and artificial intelligence
theory in REAVIEWS provides additional
insight into both the process of accounting sys-

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

192 S.R. ROCKWELL AND W.E. McCARTHY

tem design and methods for modeling that
process in knowledge-based systems. The use
of well-developed accounting theory and the
expertise of experienced accounting system
designers provides insight into database design
and methods for overcoming difficulties in the
automation of certain database design pro-
cesses.

Problem Domain
REAVIEWS’s problem-solving domain is the
machine shop industry, in part due to the avail-
ability of a number of modeling cases drawn
from actual business enterprises in that indus-
try. In addition, there is readily available much
reconstructive accounting knowledge about
such companies. This body of industry infor-
mation allowed us to explore one of our major
research goals—testing the proposition that
using domain knowledge enhances our ability
to resolve common view integration conflicts.2
Also, manufacturing operations offer a rich
business environment for the database design
process, with results potentially generalizable
to a wide range of actual businesses.

Accounting Knowledge in REAVIEWS
The three types of accounting knowledge
described earlier are implemented in the know-
ledge structures and reasoning used by REA-
VIEWS. Principles Level knowledge is
embodied by using REA accounting theory and
templates as the metamodel for constructing
the schemas used by the system. Recon-
structive Expertise derived from the Encyclo-
pedia of Accounting Systems is implemented in
the m-schema. That schema is used as the
starting point for a ‘ladder’ view integration
strategy.3 Implementation Heuristics are used
in both the m-schema and in the reasoning
strategies that integrate each user view into
the developing enterprise schema. While not
defined earlier, nor modeled as a specific type
of knowledge, company-specific information
enters the design process during integration.
REAVIEWS gathers company-specific knowl-
edge from the original user views and by
querying the user during a consultation. This
knowledge provides additional help as REA-

2This is not an ad hoc proposition, but one developed
from observation of and performing the view inte-
gration task itself. For example, when resolving inte-
gration problems such as name conflicts, the analyst
must determine if two entities are referring to the
same real world object or not. This determination is
frequently made using knowledge from the appli-
cation domain.
3For a discussion of various view-integration stra-
tegies, see Batini et al. (1986).

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

193REACH

VIEWS refines the original m-schema into a
final enterprise schema specific to the target
company.

REA Theory in the Other Knowledge Levels
REA theory actually contributes to problem
solving at several levels in REAVIEWS. As
mentioned, REA-based ‘templates’ are used as
the primary structures for modeling industry-
and company-level knowledge in the m-schema
and integrated enterprise schema. By adding
more-specific domain knowledge from the
industry and company levels to the more-
generic REA templates, we gain the ability to
make additional inferences about enterprise
schema objects. Still, this lower-level knowledge
is structured and constrained by use of the
REA templates. REA theory is also embedded
in REAVIEWS’s problem solving structure. One
example was described previously, in the set-
ting where the Employee entity was modeled
as an attribute of the Sale event. In that case,
REAVIEWS would model the Employee entity.
Another example occurs at the end of an inte-
gration session, where REAVIEWS uses the
REA templates to identify important entities
that may have been incorrectly omitted from
the user schemas.

Outputs of System
When the user views have all been integrated,
the internal frame-based representation must be
translated into a form understandable by the
users. REAVIEWS output will be the complete
schema as a list of entities, attributes, relation-
ships, and structural constraints. Figure 6
shows a short section of the output file from a
sample REAVIEWS session, while Figure 7
shows an E-R diagram produced from that
output. Both of those figures show only part of
the actual output from a test case consultation.

SUMMARY AND FUTURE DIRECTIONS

Current-generation knowledge-based systems
avail themselves of a much wider array of
knowledge structures than did earlier systems,
and in that sense, they allow designers to be

Figure 6 Partial output from REAVIEWS

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

194 S.R. ROCKWELL AND W.E. McCARTHY

Figure 7 Partial output from REAVIEWS (in E-R format)

very ambitious with regard to final objectives.
Our approach to the task for which REACH
will provide consultation support—events-
based accounting system design with a pervas-
ive emphasis on suspension of implementation
compromise—is one that no present human
actually does. It is far too ambitious a decision
environment, and it would require detailed
expertise in all three areas of domain know-
ledge described in this paper. However, our
KBS blueprint for REACH is deliberately chal-
lenging, and we intend to selectively attempt
different modules as we learn more about REA-
patterned problem solving.

For the present REACH prototype, we are
aiming for these limited scope implemen-
tation objectives.

! Our first-order REA theory is being used
during view modeling in only a forward
engineering sense, as opposed to using the
compromise heuristics to ‘unearth’ the full
analysis of actual legacy accounting systems,

! We are concentrating initially on the easiest
and most commonly occurring accounting
transaction cycles (revenue, acquisitions, and
payroll) as opposed to the more difficult ones
(conversion, financing, etc.),

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

195REACH

! Our reconstructive enterprise models are
being used only during view integration and
we are using just a few representative indus-
try types,

! We are using just a limited set of implemen-
tation compromise heuristics for a limited set
of cycles and delaying incorporation of
others to later system versions,

! We are delaying the integration of methods
knowledge (for both structured analysis and
semantic database design) unless it is essen-
tial to prototype functioning.

In the future, we intend to remove many of
the limitations described above. This is
especially true with regard to the integrated
use of the three domain knowledge types in
a manner that spans all conceptual database-
modeling phases. In our present design, we
integrate the different types in simple pairwise
fashion either in view modeling or in view
integration but not in both. We also plan to
integrate our system seamlessly with some
structured analysis CASE tools and to use parts
of some commercially available database design
tools in support of our analysis and design con-
sultations.

The REACH project is a very ambitious one.

The design or re-engineering of business
accounting systems is one of the most common
types of software engineering tasks, and there
is a tendency to think that most of the problems
in this arena have already been solved. This is
decidedly not true, especially if one considers
database environments where shared decision
use of economic transaction data is a vastly
undeveloped area. Most knowledge-based use
of accounting data at present concentrates
almost exclusively on account dollar analysis of
the type illustrated in FSA (Mui and McCarthy,
1987). We believe that we have a methodology,
a theory, and a tool to design events-based
accounting systems that will far surpass the
limited capabilities of computerized ‘journal
and ledger’ implementations. The key to the
automated support of such design is the inte-
grated use of the knowledge types described
in this paper.

Acknowledgements

Financial support for this paper was provided
by the Department of Accounting at Michigan
State University, by Ameritech, and by Arthur
Andersen & Co. An earlier version of parts of
this paper, prior to system implementation, was
presented at The International Workshop on
Expert Systems and Their Applications in Avig-
non, France, 1989.

References

Batini, C., Ceri, S. and Navathe, S.B., Conceptual
Database Design: An entity-relationship approach,
Benjamin/Cummings, Redwood City, CA, 1992.

Batini, C. and Ferrara, F.M., ‘An integrated architec-
ture for CASE systems’, in Proceedings of the Second
International Workshop on Computer-Aided Software
Engineering, 1.7–1.12, Index Technology, Cam-
bridge, MA, 1988.

Batini, C., Lenzerini, M. and Navathe, S.B., ‘A com-
parative analysis of methodologies for database
schema integration,’ ACM Computing Surveys,
18(4), 1986, 323–64.

Chen, P.P., ‘The entity-relationship model: toward a
unified view of data’, ACM Transactions on Data-
base Systems, 1(1), 1976, 9–37.

DeMarco, T., Structured Analysis and System Specifi-
cation, Prentice Hall, Englewood Cliffs, NJ, 1979.

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

196 S.R. ROCKWELL AND W.E. McCARTHY

Denna, E. and McCarthy, W.E., ‘An events account-
ing foundation for DSS implementation’, in Hol-
sapple, C.W. and Whinston, A.B. (eds), Decision
Support Systems: Theory and Application, Springer-
Verlag, Berlin, 1987, 239–63.

Dogac, A., Yürüten, B., and Spaccapietra, S., ‘A gen-
eralized expert system for database design’, IEEE
Transactions on Software Engineering, 15(4), 1988,
479–91.

Fikes, R. and Kehler, T., ‘The role of frame-based
representation in reasoning’, Communications of the
ACM, 17(3), 1985, 904–20.

Geerts, G., McCarthy, W. and Rockwell, S., ‘Auto-
mated integration of enterprise accounting models
throughout the systems life cycle’, International
Journal of Intelligent Systems in Accounting, Finance
and Management, 5, No. 3, September 1996, 113–28.

Gold Hill, Goldworks III Reference Manual, Gold Hill
Computers, Cambridge, MA, 1993.

Ijiri, Y., Theory of Accounting Measurement, American
Accounting Association, Sarasota, FL, 1975.

Lloyd-Williams, M. and Beynon-Davis, P., ‘Expert
systems for database design: a comparative
review’, Artificial Intelligence Review, 6, 1992, 263–
83.

Loucopoulos, P. and Harthoorn, C., ‘A knowledge-
based requirements engineering support environ-
ment’, in Proceedings of the Second International
Workshop on Computer-Aided Software Engineering,
Index Technology, Cambridge, MA, 1988.

Loucopoulos, P. and Theodoulidis, B., ‘Case—
Methods and support tools’, in Loucopoulos, P.
and Zicari, R. (eds), Conceptual Modeling, Databases
and CASE: An Integrated View of Information Systems
Development, John Wiley & Sons, NY, 1992, 373–
388.

Lum, V.S., Schkolnick, G.M., Jefferson, D., Su, S.,
Fry, J., Teorey, T. and Yao, B., 1978 New Orleans
Data Base Design Workshop Report, Research Report
No. RJ2554, IBM Research Laboratories, San Jose,
CA, 1979.

Mattessich, R., Accounting and Analytical Methods,
Irwin, Homewood, IL, 1964.

McCarthy, W.E., ‘The REA accounting model: a gen-
eralized framework for accounting systems in a
shared data environment’, The Accounting Review,
57, 1982, 554–78.

McCarthy, W.E., Rockwell, S.R. and Armitage, H.M.,
‘A structured methodology for the design of
accounting transaction systems in a shared data
environment’, in Proceedings of the 1989 Conference
of the Structured Techniques Association, Structured
Techniques Association, Chicago, IL, 1989.

McCarthy, W.E., Denna, E., Gal, G. and Rockwell,
S., ‘Expert systems and AI-based decision support
in auditing: progress and perspectives’, Inter-
national Journal of Intelligent Systems in Accounting,
Finance and Management, 1, No. 1, 1992, 53–63.

McCarthy, W.E. and Rockwell, S.R., ‘On the embed-
ding of domain knowledge in automated software

engineering tools: the case of accounting’, in
Proceedings of the Second International Workshop on
Computer-Aided Software Engineering, Index Tech-
nology, Cambridge, MA, 1988.

Mui, C. and McCarthy, W.E., ‘FSA: Applying AI
techniques to the familiarization phase of financial
decision making’, IEEE Expert, 2(3), 1987, 33–41.

Pescow, J.K., (ed.), The Encyclopedia of Accounting
Systems. Prentice Hall, Englewood Cliffs, NJ, 1976.

Plank, T. M. and Plank, L.R. (eds), The Encyclopedia
of Accounting Systems, 2nd edition, Prentice Hall,
Englewood Cliffs, NJ, 1994.

Reiner, D., Brown, G., Friedell, M., Lehman, J.,
McKee, A., Rheingans, P. and Rosenthal, A., ‘A
database designer’s workbench’, in Proceedings of
the Fifth International Conference on Entity-Relation-
ship Approach, North-Holland, Dijon, France, 1986.

Rockwell, S., The Conceptual Modeling and Automated
Use of Reconstructive Accounting Domain Knowledge.
PhD dissertation, Department of Accounting,
Michigan State University, 1992.

Ryan, K., ‘An experiment in capturing and classify-

Copyright 1999 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 8, 181–197 (1999)

197REACH

ing the software developer’s expertise’, in Proceed-
ings of the Second International Workshop on Com-
puter-Aided Software Engineering, Index Technology,
Cambridge, MA, 1988.

Storey, V.C., ‘A selective survey of the use of arti-
ficial intelligence for database design systems’,
Data And Knowledge Engineering, 11(1), 1993, 61–
102.

Storey, V.C., Chiang, R.H.L., Dey, D., Goldstein, R.C.
and Sundaresan, S., ‘Database design with com-
mon sense business reasoning and learning’, ACM
Transactions on Database Systems, 22(4), 1997, 471–
512.

Storey, V.C. and Goldstein, R.C., ‘Knowledge-based
approaches to database design’, MIS Quarterly,
17(1), 1993, 25–46.

Vasarhelyi, M.A. (ed.), Artificial Intelligence in
Accounting and Auditing, Marcus Wiener, Prince-
ton, NJ, 1995.

Yourdon, E., Modern Structured Analysis, Yourdon
Press, Englewood Cliffs, NJ, 1991.

