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ABSTRACT: The Resource-Event-Agent (REA) enterprise model is a widely accepted
framework for the design of the accountability infrastructure of enterprise information
systems. Policy-level specifications define constraints and guidelines under which an
enterprise operates, and they are an extension to the REA enterprise model, adding
the “what should, could, or must be” to the “what is.” This paper aims both at com-
prehensive understanding of policy-level definitions as part of REA enterprise systems
and at understanding of the semantic constructs that enable such definitions. We first
explore two distinctive semantic abstractions essential to policy-level specifications:
typification and grouping. The typification abstraction links instances of an object class
to concepts for which they are concrete realizations, while the grouping abstraction
aggregates objects into collections. We next present a number of patterns for the se-
mantic modeling of policies. Following, we look at policy-level applications for REA
enterprise information systems. We explore type and grouping definitions for the REA
primitives (resource, event, agent) and discuss enterprise applications for three different
kinds of policy definitions: knowledge-intensive descriptions, validation rules, and tar-
get descriptions. Our discussion of specific enterprise applications includes internal
control applications (e.g., limit checks), variance analysis based on standard specifi-
cations (e.g., bills of materials), and budgeting applications.

Keywords: policy-level specifications; grouping; REA enterprise information systems;
typification.

I. INTRODUCTION
n integral part of enterprise information systems development is the specification
Aof an enterprise or conceptual model. A conceptual model is an abstract represen-
tation of reality defined in terms of semantic abstractions. Abstraction is a mental
process where some characteristics of a set of objects are selected for analysis and where
other characteristics that are not relevant are excluded. Examples of semantic abstractions
include classification, aggregation, and generalization/specialization (McCarthy 1987;
Batini et al. 1992; Odell 1998; Larman 2002). An object class or entity set classifies a set
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of objects (instances) with similar characteristics or behavior, such as the people engaged
(instances) by a specific organization as employees (object class). Aggregation is a semantic
abstraction that describes a composite object (whole) in terms of the objects of which it
consists (parts). Aggregation is used to associate different properties of a class together
(such as the names, addresses, and telephone-numbers of employees), to associate instances
of different classes together by physical containment (such as a bike consisting of a frame,
a saddle, and wheel parts), and to depict group-membership associations (such as a company
consisting of a collection of departments or a union consisting of a collection of employees).
Generalization/specialization is a semantic abstraction used to model supertypes of a class
(such as inventory as a generalization of raw-material and finished-goods) or subtypes of
a class (such as salesperson, cashier, and buyer as specializations of employee). There are
some differences in how these abstractions are used in different computing paradigms. For
example, conceptual models defined for object-oriented systems consider behavioral spec-
ifications, while those defined for database systems pay far less heed to integrated expres-
sion of procedures. For simplicity, we ignore such differences in this paper and focus on
the core abstractions as they apply across paradigms.

The Resource-Event-Agent (REA) enterprise model (McCarthy 1982) is a widely ac-
cepted framework for the conceptual design of the accountability infrastructure of an en-
terprise information system; that is, a representation of the resource flows within and be-
tween firms in terms of what is currently occurring or what has occurred in the past.
However, many applications require an extension to the REA enterprise model with a policy
infrastructure that describes what should, could, or must be occurring sometime in the
future. An important aspect of policy-level specifications is linking them with current op-
erations. For example, information about how to make an engine is linked with the actual
manufacturing of the engine. Discrepancies between what should have occurred and what
actually occurred can then be analyzed further: Why did manufacturing the engine take
longer than the time prescribed by the engineering standards? Two distinct abstractions that
are instrumental in the semantic modeling of the policy infrastructure are typification and
grouping. The typification abstraction captures concept descriptions that apply to a set of
objects. The grouping abstraction corresponds to the group-membership special form of
aggregation, and it groups objects together in collections.

This paper focuses primarily on the use of the typification and grouping semantic
abstractions to specify policy-level extensions to REA enterprise systems. The remainder
of the paper is organized as follows. Section II discusses policy-level extensions to REA
enterprise systems: the different kinds of policy definitions, the integration of the policy
and accountability infrastructures, and the heuristic nature of policy specifications. Section
III presents a comprehensive study of the typification and grouping abstractions as well as
a number of patterns for the definition of policies. Section IV discusses policy applications
for REA enterprise information systems. First, type and grouping definitions for the REA
primitives are explored. Next, enterprise applications for three different kinds of policy
definitions are discussed in detail: knowledge-intensive descriptions, validation rules, and
target descriptions. Finally, section V presents the conclusion.

II. A POLICY-LEVEL EXTENSION TO REA ENTERPRISE SYSTEMS
Figure 1 presents a policy-level extension to Resource-Event-Agent (REA) enterprise
systems. The lower part of Figure 1 represents the economic activities that actually happen
in a company; input here results from observations (or automated measurements) of these
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FIGURE 1
Policy-Level Specifications in REA Enterprise Systems
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activities. The upper part of Figure 1 represents the economic activities that should, could,
or must happen in a company, and input there results from planning and control activities.
“T” and “G” represent the two key semantic abstractions we are going to use in this paper
to model policies: Typification and Grouping. The middle layer shows that integrating the
policy and accountability infrastructures enables inference, validation, and discrepancy
analysis.

The accountability infrastructure or operational level of REA enterprise systems is well-
documented in the literature (McCarthy 1982, Dunn et al. 2005). In essence, the REA
model is a pattern for the semantic definition of business processes. Phenomena captured
by the REA model include the economic activities that take place in a company, the re-
sources that are acquired and consumed, and the agents who are accountable for economic
activities.

The Business Rules Group (2000) defines a policy as “‘a general statement of direction
for an enterprise.” In this paper, the term ““policy” refers to a description of economic
phenomena that could, should, or must occur. We distinguish among the following three
types of policy definitions: knowledge-intensive descriptions, validation rules, and target
descriptions. A knowledge-intensive description defines characteristics of a concept that
apply to a group of objects. Such characteristics can take the form of a policy definition:
e.g., the price of any bottle of Chanel No. 5 is $75. Actual instances, e.g., an actual bottle
of Chanel No. 5, can then derive the policy-based characteristic through inference: “If a
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bottle is of type Chanel No. 5 then its price must be $75.” A validation rule represents
permissible values, and a common application of validation rules in enterprise systems is
preventive controls. For example, the salary for an employee should be validated against
the salary range defined for his or her employee type, such as “A staff member should earn
between $25,000 and $40,000.” Target descriptions provide benchmarks regarding eco-
nomic phenomena, and they can take at least two different forms: standards and budgets.
Generally, standards are specifications to be followed; however, they may be tweaked (like
changing a cookie recipe). Standards often refer to engineering information, for example:
“How much raw material does it take to manufacture a bike?”” or “What are the best
practices for assembling cars?” Budgets provide quantified performance measures most
often related to a specific time period such as “How many cars do we expect to sell in the
second quarter of 2006?”

The upper right side of Figure 1 illustrates knowledge-intensive descriptions, validation
rules, and target descriptions as the main output of the planning and control activities and
the mechanisms to define the policy infrastructure. The middle right side of Figure 1 shows
enterprise applications that rely on the integration of the accountability and policy infra-
structures. For example, through inference, policies defined for concepts can be applied to
their actual instantiations, validation can insure that descriptions of actual enterprise phe-
nomena do not violate the rules defined as part of the policy infrastructure, and discrepancy
analysis can compare actual phenomena with their target descriptions (a common account-
ing application of this last case is variance analysis).

The accountability and policy infrastructures of REA enterprise systems strongly differ
in nature. The accountability infrastructure defines “what is’” and is structured following a
set of normative, domain-specific modeling rules. The REA transaction pattern helps to
structure the description of business processes by defining the domain-specific object classes
(resource, event, and agent) and associations (stock-flow, duality, and participation) that
should be part of such a description. The template further embeds the following domain-
specific structuring rules: (1) an economic event must be part of a duality association; that
is, economic events resulting in an inflow of resources must be linked with economic events
resulting in an outflow of resources, and (2) all economic resources must participate in an
inflow and an outflow association. The first rule affects economic consideration between
resource flows, while the second insures the integration of business process descriptions
into an enterprise value chain. The policy infrastructure, on the other hand, represents
mechanisms designed to plan, control, and evaluate economic activities, and it is essentially
nonnormative in nature; i.e., there are no domain-specific rules mandated to structure policy
definitions. A business entity may often decide to eschew policy-level extensions for one
or more elements of the accountability infrastructure. For example, certain companies could
decide not to record budgetary information for a specific economic event (e.g., they do not
define or maintain purchase budgets) or single-product companies would have no need for
product type definitions.

III. POLICY DEFINITIONS WITH THE TYPIFICATION AND GROUPING
SEMANTIC ABSTRACTIONS
The Typification and Grouping Semantic Abstractions
The concept of typification goes back to Plato and other Greek philosophers (Tarnas
1991) where type images are described as ‘‘archetypal forms.” For example, a horse is a
real thing, while “horseness’ is an abstract concept (Sowa 1999; McCarthy 2002). In
addition to philosophers, typification has been studied extensively by computer science
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researchers including Smith and Smith (1977a, 1977b), Brodie (1981), Sakai (1981),
Hammer and McLeod (1981), Fikes and Kehler (1985), and more recently, Goldstein and
Storey (1994), Hay (1996), Fowler (1997), Odell (1998), Scheer (1998), Eriksson and
Penker (2000), and Silverston (2001). While differences in notation, application domain,
and computing paradigm exist among these researchers, they all present the idea of typi-
fication as a semantic abstraction useful for capturing concept descriptions that apply to a
set of objects.

An example of typification is illustrated in Figure 2.! Instances of PlaneType represent
concepts or type definitions, and the Plane-PlaneType association represents a typification
abstraction. The use of the a-kind-of and applies-to roles in Figure 2 further elucidates the
semantics of typification. The definition of a Boeing 747 applies to all its realizations
{pl,p2}? while in the opposite direction, pl is a-kind-of Boeing 747. The instances of a
type definition, such as PlaneType in Figure 2, are considered to possess archetypal essences

FIGURE 2
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I 'We use most of the conventions of a UML (Unified Modeling Language) class diagram (Booch et al. 1999) in
this paper. For simplicity reasons, we do not use UML’s notation for aggregation: a diamond at the aggregate
end. For illustration purposes, we use black circles to represent instances of an object class; e.g., in Figure 2, a
Boeing 747 is an instance of the PlaneType object class. When we use a UML class diagram, we adopt the
common convention of using “‘camel case” to describe our examples.

2 We use {} to represent instances.
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that portray ideal or typical components of objects, such as a Boeing 747 having four
engines and a range of 7,500 miles. The descriptions of the type class are definitional
in nature, such as giving the distinguishing characteristics of a Boeing 747. The example in
Figure 2 further illustrates that it is possible to have a type definition for which there are
no current realizations (Boeing 787).

Typification and generalization abstractions are intertwined as seen in Figure 3 which
illustrates the following:

(1) typification: the explicit linking between actual employees (instances of Employee:
{John, Joan, Mark, Barbara}) and different employee categories (instances of
EmployeeType: {Salesperson, Buyer, Cashier}).

(2) generalization: the object class Employee is decomposed in the generalization
plane, and employees are assigned to their appropriate subtypes—John and Joan
become instances of Salesperson, for example.

While both abstractions represent the same categories (Salesperson, Buyer, Cashier),
the information captured differs substantially. Instances of the entity Employee represent
actual employees with a social security number, a name, etc. A set of employees becomes
a subtype if it has differential properties, differential participation in relationships, or (in
an object-oriented environment) differential behavior. For example, a credit limit is a char-
acteristic to be recorded for instances of Buyer only. On the other hand, instances of

FIGURE 3
Typification and Generalization
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EmployeeType represent concepts, and they further describe each of the subtype object
classes. An example of information gathered for employee type instances is the particular
job responsibilities of a type. So, instead of recording additional information for all in-
stances of a subtype (e.g., all buyers), the type definitions define the characteristics of the
subtypes themselves (e.g., What is a buyer? What are the characteristics of a buyer?). The
semantic abstraction in Figure 3, where the type instances are also the names of object
classes, is labeled a “‘generic entity” in Smith and Smith (1977b) and a “power type” in
Odell (1998). Odell (1998, 28) describes a power type as follows: “an object type whose
instances are subtypes of another object type.”

While type definitions and subtypes capture two different kinds of information needs
for the same object class, each of them may exist without the other. When there are no
differentiating individual characteristics or behaviors of interest among groups of employ-
ees, the subtypes can be left out. However, EmployeeType can still be used to record the
job responsibilities for specific categories of employees. Similarly, it is possible to record
specific characteristics for a subtype without being interested in generic or static information
for any of the subtypes. Most generally, the use of the typification abstraction in a model
warrants additional consideration of expansion in the generalization sense. However, in this
paper, we choose to focus on policy-level modeling issues, so our examples concentrate
largely on typification being used by itself.

Grouping has been extensively studied by researchers including Brodie (1981) and
Motschnig-Pitrik and Storey (1995). Grouping is considered as a special form of aggre-
gation, and it groups objects into collections based on one or more common characteristics.
The grouping abstraction emphasizes the properties of the set object class, and it is con-
sidered as a modeling option whenever set-level characteristics are of interest.

Figure 4 illustrates an example of grouping. Planes are grouped into collections named
fleets, based on ownership. Plane is the member object class, Fleet is the grouping object
class, instances of Fleet represent grouping definitions, and the Plane-Fleet association
represents a grouping abstraction. The a-member-of and individualizes (Taivalsaari 1996)
roles in Figure 4 further elucidate the semantics of grouping.

Next, we discuss four key characteristics of the grouping abstraction. First, a grouping
association represents membership in a collection and not an is-a-kind-of association which
is the case for typification. For example, a plane is a member of a fleet but not a kind of
fleet. There is typically no close relationship between grouping and generalization and, as
a result, it is unlikely that a grouping object class is a power type (i.e., it is unlikely that
its instances are subtypes of its member class). For example, instances of Fleet (e.g., North-
west Airlines) are not subtypes of the Plane object class. Second, a grouping object class
describes set-level characteristics; i.e., characteristics that apply to the collection as a whole
and that are shared by all members of the collection. Examples of set-level characteristics
in Figure 4 are owner, maintenance-provider, and targeted-average-age. Third, a character-
istic of grouping abstractions is the near omnipresence of derived attributes. The Fleet object
class in Figure 4 has two derived attributes: (1) /number-of-planes—the number of planes
in the fleet, and (2) /actual-average-age—the average age of a plane in the fleet. The UML
notation for a derived attribute is a slash (/) in front of the attribute. The inclusion of a
derived attribute as part of the actual information system will be based on parameters such
as its access statistics and the cost of computing the attribute. A generally applied heuristic
is to include derived attributes that are infrequently updated but are frequently accessed
(Batini et al. 1992). Fourth, as described by Motschnig-Pitrik and Storey (1995), member-
ship associations are nontransitive, as is illustrated by the following example. The facts that
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FIGURE 4
Grouping
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the plane with id 87B5 is a member of the United fleet and that United is a member of the
Star Alliance does not imply that the plane with id 87B5 is a member of the Star Alliance;
airlines are members of alliances, not planes. Table 1 summarizes some important differ-
ences between the typification and grouping semantic abstractions.

The semantics of the typification and grouping abstractions can further be extended by
the definition of multiplicities. Type definitions always apply to a number of instances, and
their upper multiplicity is many (*). For example, the definition of a Boeing 747 applies
to all current and future planes of that category. Similarly, grouping definitions represent
collections; therefore, they are associated with multiple members and their upper multi-
plicity is many (*). For example, a fleet has many airplanes. Exclusive categorization and
membership can be expressed by an upper multiplicity of one: a plane has only one type
and a plane is member of only one fleet. However, shared classification and membership
are also possible: an employee can have many skills (shared classification) and an employee
can be assigned to more than one department (shared membership).

Finally, there are some issues related to typification and grouping that need further
clarification. From a practical point of view, the distinction between typification and group-
ing is not always definitive. This is illustrated by the example in Figure 5. Fleet now groups
planes by plane type (instead of ownership) and records set-level characteristics shared
by the collection of Boeing 747s, Boeing 737s, etc.—supervisor, number-of-planes, and
average-age-of-planes. When type definitions are used for grouping, the type and grouping
object classes are typically merged into one hybrid object class as is shown on the right-
hand side of Figure 5. The PlaneType object class now represents both a type definition
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TABLE 1
Typification versus Grouping
Typification Grouping

Nature of is a-kind-of (applies to). is a-member-of (individualizes).
Abstraction The plane with id 87B5 is a-kind-of The plane with id 87BS5 is a-

Boeing 747. member-of the Northwest fleet.

Type definitions present archetypal A grouping defines a collection with

essence and are timeless in common characteristics shared by

nature; i.e., they apply to all all its members.

current and future realizations.

Power Types Integral to the notion of typification. It is unlikely to have a grouping
class whose instances are
subtypes of its member class.

Derived Not usually relevant. Highly relevant due to the collection

Attributes Instances of types do not represent nature of groupings.

collections.

Transitivity Transitive. Nontransitive.

If a plane is a-kind-of Boeing 747 If the plane with id 87BS5 is a-
and a Boeing 747 is a-kind-of jet, member-of the United fleet and
then the plane is a-kind-of jet. United is a-member-of the Star

Alliance, that does not imply that
the plane with id 87B5 is a-
member-of the Star Alliance.
FIGURE 5
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and a grouping definition. This is a common situation for recording inventory information
in enterprise systems: both the characteristics (typification) and the number available
(grouping) of each of the item types are recorded.

Figure 6 extends this issue with a common trade-off in building enterprise information
systems. We use ““Car” as the prototypical example of resources that are individually traced.
Engine# and actual-price are characteristics recorded for instances of Car (i.e., for specific
cars). Instances of CarType represent both type definitions (type-name, fuel-capacity,
standard-price) and grouping definitions (quantity-on-hand [qoh]). We use “Nail” as the
prototypical example of resources for which it is not economical to uniquely identify in-
stances. The model for Nail is further compromised as is illustrated on the right side of
Figure 6. Information about individual nails is no longer recorded, but the qoh attribute
summarizes information about the actual number of nails available. Qoh is no longer a
derived attribute. Such a compromised definition is common for mass-produced, inexpen-
sive products.

Policy-Level Associations

An association is a relationship between object classes “‘that indicates some meaningful
and interesting connection” (Larman 2002, 153). The examples in Figure 2 and Figure 4
illustrate typification and grouping as associations that link operational-level object classes

FIGURE 6
Compromised Definition for Mass-Produced Inexpensive Products
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type name type name type name Type
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with policy-level object classes. However, associations can also be defined between policy-
level object classes® as is illustrated in Figure 7. Stratified definitions represent a first kind
of policy-level association. On the right side of Figure 7, individual planes are classified
in terms of their type (Boeing 747), and types are then further classified as categories (jet,
propeller plane). Similarly, the left side of Figure 7 illustrates a stratified definition for
flights. Instances of FlightType describe the common characteristics of scheduled flights.
For example, the scheduled departure time for the daily flight from Philadelphia to Tampa
is 8:00 a.m. An instance of Flight describes an actual flight taking place. For example, the
flight actually left Philadelphia at 8:15 a.m. Instances of RouteType (e.g., international
flights) represent common characteristics that apply to flight types (and thus flights). For
example, a passport is required for all international flights. By contrast with the flight and
plane typifications, the following example illustrates a stratified grouping definition: bas-
ketball players (Magic Johnson) are grouped into teams (the Michigan State University
basketball team), and teams are then further grouped into athletic conferences (Big Ten).
Another example of a stratified grouping definition was discussed above: Plane — Fleet —
Alliance.

FIGURE 7
Policy-Level Associations
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3 Our use of associations that directly link one abstract class with another abstract class for purposes of specifying
enterprise policies is very strongly related to the artificial intelligence notion of heuristic match, advanced
originally by Clancey (1985). See McCarthy and Outslay (1989, 24-26) for an accounting example of a heuristic
match decision.
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The diagram in Figure 7 also illustrates two nonstratification, policy-level associations:
(1) FlightType-PlaneType: the types of plane that should be used for the different flight
types (for example: the daily flight from Philadelphia to Tampa should use a Boeing 757),
and (2) RouteType-PlaneCategory: the plane categories that should be used for the different
routes (for example: jet planes should be used for international flights). Both associations
represent rules that restrict the permissible occurrences of the Flight-Plane association at
the operational level. Similar policy-level associations can also be defined between group-
ings (for example: which team [grouping] of stockbrokers manages a portfolio [grouping]
of stocks), or between a type and a grouping (for example: what plane types [type] can be
part of a fleet [grouping]).

Policy Definitions

The policy infrastructure consists of policy-level object classes and associations. The
following are three mechanisms that can be used for the actual definition of policies: attri-
butes, associations, and association classes. Each of these is described in a paragraph below.

First with respect to attributes, they can define characteristics of concepts that are then
applied to operational objects through inference. For example, all Boeing 747s have four
engines, and if a plane is classified as a Boeing 747, then it must have four engines.
Similarly, sale price can be defined for a product type and then be applied to all its instan-
tiations. Second, attributes can define validation rules. For example, the fact that the take-
off weight of a Boeing 747 cannot exceed 413 tons can be recorded as an attribute of
PlaneType called maximum-take-off-weight. The actual take-off weight of a flight with that
type of airplane is then validated against this rule. Third, attributes can also define targets.
For example, the expected departure time of each flight type will be recorded, and dis-
crepancies with actual departure times are then used to analyze delays.

An association can define both valid and invalid interactions between policy-level object
classes. The example in Figure 7 defines valid interactions between plane categories and
route types. An example of a rule defined by this association is that jets should be used
for international flights. Associations can also express invalid interactions that should not
occur at the operational level. The policies defined in Figure 7 by the association between
RouteType and PlaneCategory could be rephrased in the following way: the plane categories
that cannot be used for each of the route types. An example of such a policy would be that
propeller planes cannot be used for international flights. Associations can also be used to
define targets. For example, the FlightType-PlaneType association in Figure 7 could be used
to describe the following best practice information: the recommended plane types for each
flight type.

An association class represents an association that has attributes of its own. The attri-
butes can then be used to define policies in the same ways as described above. The existence
of an association class at the policy level does not necessarily imply the existence of a
corresponding association class at the operational level. Consider the example where a
targeted-fuel-consumption attribute is defined for the association between FlightType and
PlaneType. However, the actual fuel consumption will be recorded as an attribute of the
Flight object class as there is only one plane per flight. To determine variances, the targeted-
fuel-consumption attribute of the association class (what should be) will be compared with
the actual-fuel-consumption attribute of the Flight object class (what actually occurred).
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Patterns for Policy-Level Specifications

The definition of a policy-level architecture typically requires the application of one or
more of the patterns* shown in Figure 8. The following notation is used in Figure 8 to
draw attention to the composition of each of the patterns: black rectangles represent object
classes, dotted lines represent typification or grouping abstractions, solid lines represent all
associations that are not typification or grouping abstractions, and gray shaded areas rep-
resent policy definitions. Figure 9 presents an integrated example that illustrates each of
the five patterns.

The underlying structure of the “Basic” pattern (P1) is a single typification or grouping
association and policies are defined with attributes. In Figure 9, the Flight-FlightType as-
sociation represents an instantiation of the basic pattern with the scheduled-departure-time
attribute defining the policy: the time a flight should take off. The actual-departure-
time attribute of Flight allows comparing the targeted departure time (what should be) with
the actual departure time (what is). The other four patterns (P2, P3, P4, PS) in Figure 8
have the following two characteristics in common: (1) they all integrate at least one typi-
fication or grouping abstraction, and (2) they use an association (or association class) for
the definition of policies. Patterns P2, P3, and P4, define policies regarding the content of
an operational-level association. On the other hand, pattern P5 defines restrictions or guide-
lines related to multiple classifications (a-kind-of or a-member-of) of the same object class.

A “Mirror” pattern (P2) has the following configuration: (1) two associations, one at
the operational level and one at the policy level, and (2) connections between the two

FIGURE 8
Patterns for Policy-Level Specifications
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4 We use “pattern” here in the same sense as Fowler (1997).
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FIGURE 9
Stereotypical Patterns Applied
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associations through typification and/or grouping abstractions. Figure 9 illustrates the fol-
lowing instantiation of the mirror pattern:

e operational-level association — Plane-Flight;
e policy-level association — PlaneType-FlightType; and
® two typification connection associations —Plane-PlaneType and Flight-FlightType.

The configuration of the mirror pattern can be used for the definition of a variety of policies
as is illustrated by the following two examples. First, the PlaneType-FlightType association
in Figure 9 determines the permissible content of the Plane-Flight association; that is, when
a plane is assigned to a flight, then the plane’s type (typification) must be one of the plane
types approved for the flight’s flight type (typification). Stated differently, valid instances
of the Plane-Flight association—and thus its possible content—are determined by the in-
stances of the PlaneType-FlightType policy-level association. Second, the Target association
class defines the targeted fuel consumption per flight type per plane type. The actual fuel
consumption is recorded as an attribute of the Flight object class. While the configuration
(mirror pattern) is the same, the nature of the policy and the mechanisms used for its
definition differ when compared to the first example. The policy defines a target (the ex-
pected fuel consumption) instead of a validation rule. Attributes are used as a mechanism
for the description of the targeted values and the actual values.

Policy definitions, other than the ones illustrated in Figure 9, can be accommodated by
the mirror pattern. For example, the instances of a policy-level association can define targets
which are the expected combinations. Finally, with respect to the mirror pattern, Figure 9
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further illustrates how it can be stratified. The instances of the PlaneCategory-RouteType
association further restrict the possible instances of the PlaneType-FlightType association
and thus the Plane-Flight association.

While presented by itself in Figure 8, the “Compromise”® (P3) pattern is really a
variation of the mirror pattern. It occurs when, similar to the “Nail” prototype discussed
earlier in the paper, one of the typification or grouping abstractions in the mirror pattern is
compromised. Consider the example in Figure 9. The policy is defined between RouteType
and CancellationType. The missing object class in Figure 9 is CancellationEvent which
would describe the actual events resulting in flight cancellations such as a winter storm, a
mechanical problem, or a strike. Similar to the “Nail” prototype, the airline has decided
not to record the actual cancellation events, but only to record the type of cancellation such
as weather, mechanical, or labor. The Compensation association class describes the perks
to be given when a flight gets cancelled. For example, a hotel room and a meal need to be
offered (perks) when an international flight (route type) gets canceled due to weather (can-
cellation type). It needs to be emphasized that the association between Flight (operational
level) and CancellationType (policy level) is not a typification or grouping abstraction; a
cancellation type is a characteristic of a flight but a flight is not of type weather, mechanical
or labor. Similar to the other patterns, the “Compromise’ pattern configuration can be used
to define different kinds of policies. The example in Figure 9 determines (inference) the
compensation for a cancelled flight based on its route type and cancellation type. The
RouteType-CancellationType association could also express valid types of cancellations per
route type, and this information could then be used as a validation rule that determines the
permissible cancellation types per flight. Finally, the compromise example in Figure 9
shows an interesting construction. Flight is the subject of a stratified typification definition,
and cancellation type is defined per route type and not flight type.

The “Hybrid” pattern (P4) is a variation of the mirror pattern where one of the oper-
ational-level object classes does not participate in a typification or grouping abstraction.
A policy is defined as a hybrid association between a policy-level object class and an
operational-level object class. This pattern most likely occurs when one of the operational-
level object classes has a limited extension (i.e., a small number of instances), and policies
are defined for actual instances. In Figure 9, the Fleet-ServiceOperator association defines
a policy (validation rule) as part of a hybrid pattern; that is, the list of individual operators
that are authorized to service a fleet. Instances of the Plane-ServiceOperator association
are then validated against this policy. For example, a plane can only be serviced by a
service operator who is authorized to serve the fleet of which the plane is a member, so
the Fleet-ServiceOperator association determines the permissible content of the Plane-
ServiceOperator association.

The distinctive characteristic of the ‘“Root” pattern (P5) is that the same operational-
level object class (root) participates in more than one typification/grouping association. In
Figure 9, the root object class Plane participates in both a typification (Plane-PlaneType)
and a grouping (Plane-Fleet) association. The Fleet-PlaneType association defines the policy
that determines the composition of the fleet, and when a plane is assigned to a fleet, the
policy will validate whether the plane’s type has been approved. In general, the root pattern
governs dependencies between different classifications (a-kind-of, a-member-of) of the same
object class. The dependency for the example in Figure 9 is the following: an object may
become a member of a collection only when the object’s type is approved to be part of

5 Our use of the term compromise here is related to the notion of implementation compromise described in
Rockwell and McCarthy (1999).
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that collection. Similar to the other patterns, the configuration of the ‘“Root” pattern can
be used to define different kinds of policies. For example, we could define the targeted
average age per plane type per fleet using the same instantiation of the root pattern in
Figure 9. This policy defines a target, and the mechanism used for its definition is an
association class attribute.

We end this section with some additional comments on the enumerated patterns. First,
as illustrated by the examples above, they define basic configurations that serve as starting
points for the definition of different kinds of policies (knowledge-intensive descriptions,
validation rules, and target descriptions), enabled by different data modeling mechanisms
(attributes, associations, and association classes). Second, the patterns are heuristic in na-
ture, and each of them is subject to some modeling consistency issues that must be evaluated
(like all heuristics) on a case-by-case basis. An example of such discrepancy for the hybrid
pattern is illustrated in Figure 10. The PlaneType-Pilot association defines a policy (vali-
dation rule) that determines which plane types a pilot is approved for. However, the asso-
ciation between Plane and Pilot—to be governed by the policy—is not explicitly modeled
but derived instead from the Pilot-Flight and Flight-Plane associations. And third, the pat-
terns presented in this paper are nonexhaustive. For example, none of the five patterns deal
with policy definitions for heterogeneous groupings (Motschnig-Pitrik and Storey 1995).

IV. POLICY APPLICATIONS FOR REA ENTERPRISE
INFORMATION SYSTEMS

The accountability infrastructure of an REA enterprise system describes the actual
economic activities that take place—What is or what has actually occurred. The policy
infrastructure defines constraints and guidelines under which an enterprise operates—What
could, should, or must be. Two key semantic abstractions of the policy infrastructure are
type and grouping definitions, and their integrated use results in improved economy of
presentation and informativeness. Policies defined for concepts and groupings need to be
presented only once, and they are then shared by all their current and future instantiations
and members. Further, once an object is defined as a realization of a concept or as a member
of a grouping, additional information can be inferred. Type definitions are somewhat natural,
but grouping definitions are largely idiosyncratic. The policy-level information needed to
plan, control, and evaluate enterprise activities will depend on factors such as organizational
context and management style. The following examples for resources, events, and agents
should help readers understand the range and nature of type and grouping definitions in

REA enterprise systems, as well as the kind of policies specified for them.

Type Definitions for Resources, Events, and Agents

Resources are often categorized based on technical specifications, such as octane rating
for gas {regular, midgrade, premium}. Best practices (which cars need premium gas) or
price policies (what unit price to charge) can then be established for the resource types.
Events are often categorized based on their method of execution, such as the mode of sales
{distributor sales, direct customer sales, internet sales}. Another example is the method of
payment {cash, check, credit card} where a standard charge can be established for each of
the different modes. Internal agents are often categorized based on skills or roles (sales-
person, buyer, truck-driver, etc.), and authorization and compensation policies can then be
established by skill. External agents are often categorized based on qualifications (e.g.,
creditworthiness of customers and quality rankings for vendors).
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FIGURE 10
Heuristic Nature of Patterns
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Grouping Definitions for Resources, Events, and Agents

Enterprises often manage resource collections such as a fleet of airplanes (airline), a
fleet of cars (rental company), a chain of stores, or a portfolio of stocks. Examples of policy
definitions for resource collections include: ways to compose the resource collection (the
types of cars that should be part of the rental fleet) and the minimum and/or maximum
number of members in the resource collection (the minimum number of stocks that can be
in a portfolio). A somewhat different example of a resource collection often used in man-
ufacturing applications is “lot” defined by Silverston (2001, 85) as: “‘a grouping of items
of the same type generally used to track inventory items back to their source; it is often
the result of a production run.” An example of a characteristic for lots is expiration-date
which can be used in a policy such as the following: do not sell items that have expired.
Event collections are often managed as a unit, and examples include the following: a
package of ten car washes, a season pass to a theme park, and a season ticket package for
a certain sports team. Examples of policy definitions for event collections include: events
must occur during a specific time period (valid for admission during summer) and restric-
tions on the number of members (ten car washes). Agent groupings are often used to
represent groups of people that share specific tasks, goals, commitments, etc., and examples
of such groupings are committees, departments, and teams. Examples of policy definitions
for agent groupings include: the way they should be composed (best practices regarding
the composition of a team in terms of skills) and the minimum and/or maximum number
of members (the minimum number of employees on a team).

Journal of Information Systems, Fall 2006



54 Geerts and McCarthy

The policy infrastructure of an enterprise system defines constraints and guidelines
under which an enterprise operates. In section two of this paper, we distinguished among
three different kinds of policy definitions: knowledge-intensive descriptions, validation
rules, and target descriptions. Next, we discuss enterprise applications for each of these
policy definitions in more detail.

Knowledge-Intensive Descriptions

Knowledge-intensive descriptions can take different forms, and a first example is illus-
trated in Figure 11. The model is an instantiation of the basic pattern (typification) applied
to an economic resource (product). The price attribute of ProductType represents the policy
which is the amount the customer should pay for the product. The price is inferred for
individual products based on their participation in the typification association. We, therefore,
show price as a derived attribute of Product. From a business perspective, it is assumed
that the price is standardized (i.e., no discounts or other discrepancies are allowed for this
particular company). The example in Figure 11 is for a resource, but it can be applied to
other REA primitives as well. For example, an hourly rate is determined per employee type
(agent) or a tax rate is determined per sales type (event).

A second example of a knowledge-intensive description is illustrated in Figure 12 where
price is defined as an attribute of the association class PricePolicy. This is an instantiation

FIGURE 11
Knowledge-Intensive Descriptions, Validation Rules, and Target Descriptions
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FIGURE 12
Knowledge-Intensive Descriptions
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of the compromise pattern. Instances of QualityCategory denote generic categories often
represented by labels such as excellent, average, and poor. The compromise pattern indicates
that it is not economical to describe the individual quality conditions for each of the item
instances. A price policy is defined for all possible combinations of ItemCategory and
QualityCategory, and the actual price of an individual item is then determined by the
intersection of its item category and its quality category.

Validation Rules

Validation rules define constraints that must be true, and they differ from knowledge-
intensive descriptions in that they do not define derivable information but rules to which
actual phenomena (operational level) must adhere. Figure 11 illustrates the use of attributes
for the specification of a validation rule: the color of a product must be one of the valid
colors defined for its product type. The dotted line with its arrowhead pointed to
ProductType indicates that the actual color is validated against the list of valid colors.
Common applications of this pattern in enterprise systems are limit checks and range
checks. Again, such validation rules can be specified for REA primitives other than re-
source. The following is an example of a validation rule for an internal agent (employee):
the maximum salary for a specific job type (for example: the highest possible salary for an
employee with job type engineer is $190,000). Validation rules can also be defined by
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TABLE 2
Shipment Policy Decision Table

Customer Type

Transportation Type Midwest U.S. International
Plane X X

Boat X

Train X

Truck X X

means of association class attributes. For example, the price policy in Figure 12 could
define a minimum price.
Associations are another mechanism for the definition of validation rules as we will
illustrate with three examples next, each using a different pattern: mirror, hybrid, and root.
Table 2 shows a decision table that represents a number of policies regarding ship-
ping, such as “‘international customers can be serviced only by plane or boat.” Figure 13
illustrates how the policies in Table 2 can be integrated into an REA enterprise model

FIGURE 13
Validation Rule Definitions
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as validation rules. The upper part of Figure 13 shows how instances of the
TransportationType-CustomerType association define “what valid associations do exist be-
tween transportation types and customer types.” The REA enterprise model in the lower
part of Figure 13 is an instantiation of the mirror pattern, with the TransportationType-
CustomerType association being the policy definition. Typification associations link the
descriptions of the actual shipments and their customers with the policies, and they enable
validation judgments such as “‘a shipment to a customer is valid when a valid association
exists between the shipment’s transportation type and the customer’s type.”

Figure 14 shows an REA enterprise model where validation rules are defined with the
same mechanism (association), but a different pattern (hybrid). Shipment is an economic
event, Carrier is an external agent, and Shipment-Carrier is a participation association. The
Shipment-ShipmentType association categorizes shipments as being of type next day, sec-
ond day, international, etc. It is likely that a company works (has agreements) with a limited
number of carriers, and the policy definition expresses what types of shipments are approved
for each individual carrier. The policy is defined per individual carrier instead of per carrier
type. The REA enterprise model in Figure 14 enables the following validation: a carrier is
valid for a shipment when the combination of the shipment’s carrier and the shipment’s
type occur as a valid instance of the policy association (ShipmentType-Carrier).

FIGURE 14
Validation Rule Definitions
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In a root pattern, the same object class participates in two different typification/group-
ing abstractions. For the example in Figure 15, the root class employee, an internal agent,
participates in both a grouping (project team) and a typification (employee type) association.
The ProjectTeam-EmployeeType policy association defines how an employee’s membership
in a project team depends on the employee’s type. The REA enterprise model in Figure
15 enables the following validation: when an employee is assigned to a project team
(Employee-ProjectTeam association), clearance must be obtained that the employee’s type
is valid (approved) for that project team.

Target Descriptions

Target descriptions define ‘““‘what should be,” and two common applications in enterprise
systems are standards and budget specifications. Figure 11 illustrates the use of attributes
for the definition of a standard specification. The target-weight attribute of the ProductType
object class defines how much we expect instances of that product type to weigh (i.e., its
standard weight). The weight attribute of the Product object class defines how much the
item actually weighs. The typification association links actual products with their product
types and thus with their target descriptions. Discrepancies (variances) between the actual
weight and the standard weight can then be analyzed.

Standards often capture engineering information like ‘‘the proper way to do something.”
An example of a standard specification that captures engineering information is a Bill of

FIGURE 15
Validation Rule Definitions
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Materials (BoM): ““a listing of all the assemblies, subassemblies, parts, and raw materials
that are needed to produce one unit of a finished product’ (Siegel and Shim 1995, 44). A
BoM defines the way to manufacture a finished good, and Figure 16 illustrates the integra-
tion of BoM specifications into an REA enterprise model as an instantiation of the mirror
pattern. The part-of association at the operational level represents a whole-part (aggregation)
association between a finished good and its components. It describes the actual resources
consumed by an identifiable instance of finished good (e.g., the components [resources]
needed to manufacture the Boeing 747 with ID “87B5’"). Geerts and McCarthy (2000) use
“linkage” to name the association between two economic resources. The part-of association
is mirrored at the policy level defining the raw material types needed to manufacture an
instance of a finished good type (e.g., the raw materials types needed for the manufacturing
of a Boeing 747). BoM specifications typically include targets such as the expected quantity
(standard quantity) and the expected cost (standard cost) of the raw material types needed.
For the example in Figure 16, this information is recorded by the cost and quantity attributes
of the BillOfMaterials association class. This information can then be used for variance
analysis. Often, BoM specifications are more difficult than the one illustrated in Figure 16,
and more complex variations of BoM enterprise models are discussed at length in Hay
(1996) and Scheer (1998). All these variations make extensive use of policy specifications.

FIGURE 16
Target Descriptions: Standard Definition
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Standards can also be defined for other REA primitives. For example, the policy defi-
nition in Figure 15 can also be used as a standard definition instead of as a validation rule.
The ProjectTeam-EmployeeType association would then describe the expected composition
of projects teams in terms of employee types (skills), and discrepancy analysis would
compare actual with expected compositions.

Another common enterprise application of target descriptions is budget specifications.
Horngren and Foster (1991, 172) define a budget as ‘“‘a quantitative expression of a plan
of action and an aid to coordination and implementation.” Examples of budgets include the
following: determining the estimated cost for the manufacturing of a custom-built home,
determining how many units should be sold in the next quarter, and determining the amount
of advertising allowed in a quarter. Figure 17 defines a sales budget and shows that bud-
get information primarily is of two types: (1) static estimates done in advance (the budget
amount), and (2) derived attributes representing arithmetic roll-ups (the actual amount). The
budget-amount defines the estimated total sales amount for the specified time period; thus,
it applies to all sales transactions that will occur during that period. Actual-amount is a
derived attribute calculated from the Sales amount attribute, and it is used for discrepancy
analysis. The actual amount represents a running total that will increase over time. The
dotted association line in Figure 17 indicates that membership in time periods can be

FIGURE 17
Target Descriptions: Budget Definition
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determined procedurally by applying time functions to the date attribute; i.e., the grouping
association does not have to be recorded explicitly.®

Budgets are often broken down into components that define who and what. For REA
models, the who and what can be expressed in terms of agents and resources, such as the
following: the number of items per finished good type (resource) each salesperson (agent)
should sell (event) in Spring 2006. The REA enterprise model for this budget specification
is illustrated in Figure 18. Instances of the SalesBudget object class define the budgeted
quantity per FinishedGoodType per SalesPerson per time period. Stated differently, both
“for” associations in Figure 18 are part of the budget definition. The budgeted stock-flow
association is part of a mirror pattern instantiation. The budgeted participation association
is part of a hybrid pattern instantiation, since budgets are specified for individual salespeo-
ple. The model in Figure 18 does not explicitly define the Sale-SalesBudget grouping
association. A sale becomes a member of a sales budget (grouping) when (1) its date occurs
in the sales budget time period, (2) its finished good is of the type specified for the sales
budget (the mirror pattern), and (3) its salesperson is the salesperson for whom the budget

FIGURE 18
Target Descriptions: Broken-Down Budget Definition
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¢ An alternative presentation for time period often used in practice is the definition of a start date and an end
date.
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is defined (the hybrid pattern). Stated differently, the policy associations are used to derive
budget membership procedurally. However, for the case where the Sale-SalesBudget group-
ing association is explicitly modeled (i.e., a sale is explicitly assigned to a sales budget),
the policy associations define constraints. For example, a sale cannot be a member of a
sales budget when the sale’s finished good is not of the type defined for the sales budget
(the mirror pattern).

V. CONCLUSION

In this paper, we have extended the REA accountability infrastructure with policy-level
definitions that specify “what should, could, or must be.” In the initial part of the paper,
we laid the groundwork by studying the two key semantic abstractions that enable the
definition of policies: typification and grouping. Following this exposition, we presented a
number of patterns for the semantic modeling of policies. In the second half of the paper,
we discussed policy applications for REA enterprise systems. We first presented typification
and grouping extensions for REA primitives. Next, we differentiated between three different
kinds of policy definitions in enterprise systems—knowledge-intensive descriptions, vali-
dation rules, and target descriptions—and we discussed applications for each of them. We
noted that (1) knowledge-intensive descriptions enable the definition of policies that can be
inferred (such as “what the price must be”), (2) that validation rules present constraints
that must be met (often in the form of a set of permissible values), and (3) that target
descriptions represent guidelines as to “what should be.”
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