OPERATION OF A RELATIONAL
ACCOUNTING SYSTEM

Graham Gal and William E. McCarthy

ABSTRACT

This paper describes the procedures needed to maintain a relational accounting in-
formation system and to retrieve from it normal types of financial reporting data in a
computerized environment. Elementary concepts of relational databases are presented
first, followed by a description of the Query-by-Example (QBE) system. QBE pro-
cedures needed to derive a general ledger from disaggregate records of economic
resources, events, and agents for a sample company are illustrated and explained.

Following the description of general ledger processing via the QBE system, the
paper discusses the difficulties inherent in the use of set-oriented languages with ac-
counting data. These difficulties include, for example, problems with accounting con-
ventions such as LIFO and FIFO inventory costing. The paper concludes with a list
of recommendations for accountants who are considering the use of relational database
management systems.

INTRODUCTION

In recent years, relational database management systems (DBMS) have
become increasingly available on a wide variety of both large mainframe
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computers and smaller microcomputers. This widespread commercial avaij.
ability foliows a decade or more of scientific research which has consistent]
demonstrated the conceptual primacy of the relational model in the design
and maintenance of multipurpose data management systems.

The arguments for relational systems are discussed by Date [1981, Chap.
28], and they are both theoretical and practical in nature. On the theg
side [Codd, 1970], relational systems have not only a sound basis in the
mathematical theory of relations but also a well-developed body of com.
puter science research which supplies formal criteria both for evaluatiop
of database designs (the concept of normalization) and for determinatiop
of sufficiency for a database system’s language features (the concept of
relational completeness). Aspects of these formal theories are introduced
in the context of managerial and financial accounting systems by Everest
and Weber [1977].

On the practical side, the advantages of relational DBMS can be char-
acterized quite succinctly: these systems are simple and easy to use. Data
is displayed and manipulated in simple tabular form, and the number of
new constructs to be learned by a novice user is relatively small. Indeed,
while the theoretical considerations mentioned above will always remain
important, it is this simplicity which has made relational systems especially
appealing to the growing number of smaller computer users, a market
segment which accounts for most of the increase in their commercial use
[Kruglinski, 1983].

In this paper, we describe an implementation of a relational accounting
system with a particular emphasis on its operational or procedural char-
acteristics. Our intent here is twofold: (1) to demonstrate the simplicity of
relational procedures and to show how such procedures can be used to
construct an events accounting system [McCarthy, 1981; Sorter, 1969] and
(2) to identify distinct limitations of pure relational implementations and
to suggest alternatives which might need to be considered in future ac-
counting uses of these systems. As a vehicle for explanation of our oper-
ations, we use the data for a simple retail enterprise over the course of
one month. The relational DBMS used in our actual implementation was
the commercial version of Zloof’s Query-by-Example [Zloof, 1975; IBM,
1980}, a system whose simplicity and ease of use has been demonstrated
in an experimental setting by Greenblatt and Waxman [1978].

This paper is organized as follows. We first describe some fundamental
concepts of relational systems with two simple examples, and we use these
examples to describe the procedural mechanics of Query-by-Example
(QBE). This introduction is followed by two sections which describe our
use of QBE procedures and which overview the hierarchic structure of the
operations we perform. This overview is followed by a more detailed de-
scription of the derivation of successively more aggregate accounting values
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such as an accounts-payable balance, a liabilities total, and a trial balance
total. The paper’s final section discusses limitations in our implementation,
including the problems engendered by the sole use of specification oper-
ations [Tsichritzis and Lochovsky, 1982, pp. 74-82]. This last part also
explains how elements of the REA accounting model [McCarthy, 1982]
relate to this system and why we found it necessary to extend the basic
QBE operational facilities to perform needed accounting calculations.

RELATIONAL DATABASES
AND QUERY-BY-EXAMPLE

Query-by-Example derives its name from the method of retrieval it uses
in selecting data from a relational system. Relational databases are pre-
sented to a user in tabular form (similar, for instance, to a tax table or a
present value table), and QBE performs operations by:

1. having users compose an answer to their questions substituting “‘ex-
ample” elements for columns with unknown vaniables, and
2. using those answers to link separate tables together and extract data.

In the next two subsections of the paper, we explain some simple rela-
tional concepts, and we demonstrate how a language like QBE can be used
to retrieve data from tables.

QBE With a Single Table

Figure 1 illustrates a table (also called a relation) used to represent
information about inventory items in a company’s database. The name of
this particular table is given on the top left as “INVENTORY." The column
headings, such as “STOCK#” and “DESCRIPTION,” represent attributes
of inventory items, while the rows (also called tuples) in the body of the
table represent actual values for each of 12 different inventory types. The
boldface column “STOCK#’ is this table’s key attribute. Relational theory
requires that each table represent just one concept, and a key attribute is
one whose values uniquely identify all occurrences of that concept. In
Figure 1, there are 12 different types of inventory; hence there are 12 rows
or tuples, each with a unique value in the boldface column. For the sake
of contrast with this small example, one could envision a table representing
the employees of a large factory. Such a table might have 5,000 or more
rows. Each row would represent an individual employee, and it probably
would be keyed on that employee’s social security number.

Table names and column headings constitute the intension or the type
definitions of a certain database. Thus, “INVENTORY" is the name of a
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concept of interest in this company, and “STOCK#,” “DESCRIPTION,”
etc., are that concept’s attributes of interest. The extension of a database
consists of its occurrence definitions or its actual row values. The extension
of the table portrayed in Figure 1 consists of its 12 rows or tuples.

Figure 2 illustrates how Query-by-Example can be used to extract tabular
data. QBE users begin their query process by asking to see table headings
for a concept in which they are interested. If the inventory example of
Figure 1 were stored in a QBE database, such a request would be performed
by titling a blank or skeleton table with the name “INVENTORY,” and
QBE would respond with the intensional features shown in Figure 2(a).

Once given a table’s intension, users specify which rows are to be re-
trieved by typing in an example answer. This example answer uses constant
elements for known attributes and example elements for unknown attri-
butes. Example elements are typed in prefixed by a single underscore
character, and they are intended to represent a typical instance of a col-
umn’s value (for instance, “BANANA” might be put under a “FRUIT”
column). Constant elements are simply typed in unadorned.

Figure 2(b) shows the QBE operators that a customer service clerk would
fill into the “INVENTORY™ table to find out which teddy bears are in

INVENTORY STOCK # DESCRIPTION PRICE QOH COLOR

Figure 2 (a). Inventory Intension.

INVENTORY STOCK # DESCRIPTION PRICE QOH COLOR

P. .. 5555 P.TEDDY BEAR:

Eg

P.>0 P _ PINK
Figure 2 (b). Query for In-Stock Teddy Bears.

INVENTORY STOCK # DESCRIPTION QoM COLOR

2456 TEDDY BEAR |+ 15 r YELLOW
5130 TEDDY BEAR 25 BROWN

Figure 2 (c¢). Results of the QBE Operation.
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stock. This query ranges over the table’s entire extension, and it returns
tuples meeting two conditions: (1) rows whose description value is “TEDDY
BEAR” and (2) rows whose QOH value is “>0" (greater than zero). This
clerk also wishes to see the “STOCK#”” and “COLOR”" columns for in-
stock teddy bears, but not their “PRICE” values. This last condition is
specified by filling in example elements (which again are prefixed by an
underscore character) in the first and fifth columns and by leaving the third
column blank. The “P.” or print operator specifies which columns are to
be used in displaying the answer.

Figure 2(c) illustrates the result that would be displayed when the clerk’s
query is executed. A comparison of this output with Figure 1 illustrates
that operations have been performed which (1) reduced the number of
rows from twelve to two and (2) reduced the number of columns from five
to four.'

The full data tables, such as the one shown in Figure 1, which are actually
defined and stored in a QBE database are called base tables or relations.
They are the fundamental building blocks from which all answers are ul-
timately derived. The reduced tables, such as the one shown in Figure
2(c), which represent the output from a QBE operation are called derived
relations or virtual tables. Applying QBE operations to a base relation
always produces a derived result which is itself a relation. This important
property of closure [Date, 1981, p. 203] is one which we use extensively
in our accounting implementation.

QBE with Multiple Tables

A sample QBE retrieval that ranges across four base tables is illustrated
in Figure 3(a). This is a more complex query than our first one, and it is
performed on tables which represent the interactions of customers and
salespeople in sales transactions. Again, column headings represent attri-
butes, and boldface columns signify key attributes or combinations of at-
tributes that uniquely identify each sale, each customer, each salesperson,
and each instance of a relationship among those three entities.

In the body of the tables, we have inserted the QBE operators needed
to answer the question, “Who are our salespeople who made large (greater
than $10,000) sales to customers from Boston?” This particular query needs
four different example elements (each again prefixed by a single underscore
character) to link data in the various tables together. Starting with the
table at the top, we can see that sales over $10,000 are first identified.
These sales (represented by “.INV1”) are then linked to their appropriate
salespeople and customer (represented by *“_SP1” and ““.C1”" respectively),
and a check is then made to restrict the answer to the salespeople who
deal with Boston customers. The example element ““.SP1” represents all
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salespeople who meet both criteria. We then link ““.SP1” to its appropriate
salesperson name (example element “.SMITH”) and designate that both
pieces of data are to be placed in the “OUTPUT" table shown at the
bottom Figure 3(a).” The “OUTPUT table is not an actual part of the
database (that is, it is not a base table) but is instead a user-defined or
derived table designed only to hold the results of a query. The “P.” op-
erator placed under the relation name here causes both columns to be
displayed.

Figure 3(b) illustrates a possible answer to this entire second query. In
this case, it shows that only four people—Bob, Ann, Dick, and Kathy—
made large sales to Boston customers.

This multiple table query finishes our introduction to relational databases
and QBE. We proceed now to an overview of our programming methods.

PROCEDURAL OVERVIEW

QBE is a graphical language based upon the domain calculus [Uliman,
1983], and it is most commonly used interactively with a video terminal as
a stand-alone retrieval facility [IBM, 1980]. In our accounting work, we
will limit procedure specifications to those which can be effected entirely
within the QBE system. As we explain later, this narrows the scope of our
work somewhat. However, it also allows us to demonstrate how ser op-
erations alone can be used to derive general ledger balances from a group
of relations which do not contain debits, credits, or accounts. Because of
its proven user-friendliness, QBE makes these set operations relatively
easy to explain and understand, as well as to implement.

In this section of the paper, we discuss the general operational features
of our relational accounting implementation, and we give simple examples
of the programming methods that we used (such as modularization, nesting,
and view construction).

The Structure of a QBE Programming Module

A program in QBE is usually defined with a single screen on the video
display terminal. Thus, Figure 2(b) can be considered a program with the
following parts:

1. an input component consisting of the full intension and extension
of the “INVENTORY?" table;

2. a process component consisting of the various relational operations
(such as selection, projection, and join) that are effected by the
QBE operators, constant elements, and example elements; and
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3. anoutput component consisting of the reduced table shown in Figure
2(c).

In a similar manner, a screen which contains the operators illustrated in
Figure 3(a) would be a program which transforms four tables of input into
one table of output.

Each QBE program can be given a name, and we tried in our imple-
mentation to use program names which closely described the conclusion
being materialized [McCarthy, 1982, pp. 567-70] from the database by that
particular QBE procedure. Thus, a program which uses data concerning
customers, sales, and cash receipts as inputs and which produces a subsid-
iary accounts-receivable listing as an output would be called ‘“‘accounts-
receivable materialization.” We also use the term module [Yourdon and
Constantine, 1979; Turner, 1980] to describe a QBE procedure or set of
procedures that has just one functional purpose.

Program Hierarchies

It is possible in QBE to nest modules by having them call and execute
each other in much the same manner as subroutines are invoked in pro-
gramming languages like BASIC. For example, a procedure for material-
ization of costed inventory items in a manufacturing company might consist
of three sub-tasks which produce in turn the relevant information for raw-
material items, work-in-process jobs, and finished-good products. In each
case, a program could be written which would accumulate cost information
from base tables representing both the inventory types and the inventory
transactions (such as purchases, factory operations, and sales). This new
data would be put into derived tables to be passed to a consolidating module
which materializes the costed data for all inventory types.

A common method for showing such subordinate-superior program re-
lationships is the structure chart or hierarchy [Yourdon and Constantine,
1979] illustrated in Figure 4. Each box on this chart represents a program
module for the inventory materialization example just discussed. The ar--
rows with blank tails that go from the second level modules to the top or
control module simply illustrate the data that is passed from lower to higher
processes. At the bottom level, we can see that various base tables of the
manufacturer’s database would provide the essential disaggregate data
needed for costed inventory calculations.

View Construction

In our accounting implementation, we encountered difficulty in nesting
large groups of modules, because the operational version of QBE [IBM,
1980] did not fully support the database concept of *‘views” [Date, 1981,



RAW-MATERIAL
MATERIALIZATION

raw material
item and
purchase data

INVENTORY
MATERIALIZATION

WORK-IN-PROCESS
MATERIALIZATION

WIP jobs
and factory
operation data

Figure 4. A Structure Chart.
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pp. 159-162; McCarthy, 1982, p. 569]. More specifically, QBE did not
allow the output from one program to be passed to another unless that
output was made part of the permanent database. We did not want our
derived tables to become base elements in the system:; we only wanted
them to be virtual elements which would cease to exist once a procedure
was finished. On the other hand, we also wanted to be able to build multi-
level module structures.

To overcome this problem, we did two things. We first defined intensions
for all of our derived tables; these were stored permanently. We then
defined procedures for materialization of the extensions of our derived
tables by using the two-level module structure shown in Figure 5. Each
materialization module consisted of three subprograms:

1. a delete module which removed the entire previous extension of the
derived table;

2. a populate module which created a new extension from the current
version of the base tables; and

3. a display module which printed out the results of the populate
operations.

For explanation purposes, we assume in the rest of this paper that these
materialization procedures work like views in the strictest sense of the
word. That is, we assume that the only way to access a virtual table is to
invoke the procedure which produces it.

This explanation of view construction finishes our procedural overview.
The paper’s next section details the specifics of our retail implementation.

RELATIONAL IMPLEMENTATION OF AN
EVENTS ACCOUNTING DATABASE

At the logical design level, an accounting database has three primary com-
ponents [Tsichritzis and Lochovsky, 1982, Chaps. 1-4]:

1. A structural or declarative component which uses the concept of
abstraction to categorize accounting phenomena into sets of objects
with similar properties;

2. aconstraint component which restricts both the values used to char-
acterize accounting objects and the structures that can be used to
relate these objects together; and..

3. an operation or procedural component which specifies the retrievals
and actions which may be performed on the database model.
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Figure 5. Two-Level Module Structure for View Materialization.




Operation of a Relational Accounting System 95

As mentioned previously, we concentrate in this paper on the third of these
components: that is, the sets of QBE procedures needed to maintain an
accounting system and to retrieve from it normal types of financial reporting
data. Our relational implementation models a small retail enterprise with
41 base tables and a well-developed set of QBE procedures.® This section
of the paper first overviews that implementation. We then proceed with a
thorough explanation of a single accounting example—materialization of
accounts-payable for inventory purchases—and we finish with less-detailed
expositions of some more aggregate accounting elements.

Procedural Overview

Figure 6 portrays the procedural specification of a general ledger for a
simple retail enterprise. Each box on the structure chart represents a QBE
module which materializes certain accounting elements and which then
passes those elements (in the form of relations) to a higher level in the
hierarchy. The data items shown on the connecting lines are views or virtual
relations; thus, each one of the materialization modules has the delete,
populate, and display subcomponents explained in Figure 5. We also note
that base relations provide program input at both the lower level and the
second level of the structure chart.

In the two subsections which follow, we explain the detailed mechanisms
of those modules surrounded by dotted lines in Figure 6.

Accounts-Payable for Inventory

As mentioned above, the declarative component of a database uses the
concept of abstraction [Tsichritzis and Lochovsky, 1982] to categorize phe-
nomena into sets of objects with similar properties. In our accounting
example, the particular abstraction method used was Entity-Relationship
(E-R) modeling [Chen, 1976}, and application of this method to an example
retail enterprise resulted in an E-R model similar to that illustrated by
McCarthy {1979, p. 675].

Figure 7 portrays the portion of our E-R model which deals specifically
with the calculation of accounts-payable for inventory purchases. Each of
the three rectangles shown represents an entity set, while the diamonds
represent relationship sets. Attributes of entities and relationships are rep-
resented above the rectangles and diamonds by lines with circles on the
end. Circles that are filled in signify key attributes [Atzeni et al., 1983].

Mapping an E-R model into a relational database is a relatively straight-
forward task which uses one table (or base relation) to represent each
entity set and one table to represent each relationship set.* Column head-
ings represent attributes. Thus, a user could work with the data model of
Figure 7 by creating five tables and by designating keys properly. As the
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actual purchases and cash disbursements for the retail company occur and
as vendors are added to our list of suppliers, new rows would be inserted
into the database for all of our example tables.

I[f we assume that relations such as those described above have been
created and maintained in the retail company for a month, the QBE pro-
gram of Figure 8 could be used to produce a listing of subsidiary accounts-
payable for vendors who supply inventory. The intensions of the first five
tables shown in that program are mapped directly from the E-R diagram
of Figure 7. The sixth table shown—"ACCOUNTS PAYABLE INVEN-
TORY"—is a virtual relation into which the results of the QBE program
are inserted and with which those results are passed to a higher level
module.

The calculation of accounts-payable for purchases is a good example of
the set orientation of relational database systems, and we highlight this
orientation by portraying the QBE operations graphically in Figure 9. This
particular calculation can be best understood by viewing both Figure 8 and
Figure 9 together and by following the explanations given below.

a. First, the set of unpaid purchases is identified for the retail enterprise
by performing a set difference operation which subtracts paid-for
purchases from all purchases. In QBE terms, this operation is per-
formed by identifying all purchase events (that is, extensions of the
“PURCHASES" table as specified by example elements in its key
columns) which do not also participate in the purchase relationship
(as specified by the not—‘="'—operator in the “PURCHASE PAY-
MENT" table).

b. Second, elements of this set of unpaid purchases are linked individ-
ually to their respective vendors and then grouped into subsets on
the basis of vendor identification. In QBE terms, this linking and
grouping is done by using example elements and by inserting the
group-by operator—"'G.”—in the key column of the “VENDOR”
table.

¢. Third, the summed dollar amount for each subset of unpaid pur-
chases, along with its vendor number and name, is identified and
inserted into the database as accounts-payable. This last operation
is effected by QBE with the insert operation—"1.”’—in the “AC-
COUNTS PAYABLE INVENTORY” table.

The set-oriented illustrations of Figure 9 portray graphically an advanta-
geous feature of relational systems which is their ability to have operations
range over an entire table at a time. This featurc aiiows users simply to
specify operators appropriate for a given set of things without having to
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lay out algorithmically the element-by-element iterations needed for in-
dividual application.

If we now return to the structure chart of Figure 6, we see that the
materialization of accounts-payable for inventory is a program module
located at the third hierarchical level and that it produces as a result of its
invocation both the intension and extension of the last table shown in
Figure 8. This table is a virtual relation or view which is always current
(the information is never stale) and which can always be accessed on-line
by anyone who is given the authority to look at it (a disbursements clerk,
for example). For purposes of this paper however, we are more interested
in this module’s role in the overall scheme of Figure 6—that is, in its use
in the overall materialization of the general ledger. Seen in that light, the
payables for inventory simply become a component of a more aggregate
set of accounting numbers. In the section that follows, we explain how this
and other components are used for this larger purpose.

QOther Materialization Modules

This section discusses the derivation of the rest of the selected compo-
nents surrounded by dotted lines in Figure 6. Because the explanations of
previous examples have been very detailed, we will assume that the ru-
diments of QBE operations are now understood. Explanations here will
proceed more quickly.

Figure 10 illustrates the populate program for the materialization of
accounts-payable for services, a procedure which produces a list of vendors
who do such things as rent the company office-space or provide it with
advertising. This module operates analogously to the module shown earlier
for inventory payables with one exception: no set difference operation is
performed. Instead, payables are calculated by summing up expense trans-
actions and then by subtracting related disbursements. To perform such
an operation, we identify each vendor (using example element “.VN”)
and then link through to obtain the dollar amounts of both “GENERAL
AND ADMINISTRATIVE SERVICE” and “CASH DISBURSE-
MENT.” The Group-by operator (**G.”) in the top table again partitions
the dollar amounts by individual vendor, while the derived table “AC-
COUNTS PAYABLE SERVICES” at the bottom of the figure is the
repository for the final arithmetic calculation which subtracts summarized
disbursements from summarized services.

The method shown above must be used with relational systems to ma-
terialize claims when the duality relationships between economic events is
not functional (that is, when they are not “I-to-I"” or *“‘n-to-1"" [McCarthy,
1979, pp. 671-73}). In our modeled example, we assumed that a service
could be paid for with many disbursements (such as a big freight bill being
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paid in monthly installments), but we also assumed that many services
could be paid for with one disbursement (such as monthly advertising
services being paid with a yearly check). This relationship was many-to-
many (“‘m-to-n”") and non-functional.

Figure 11 portrays the materialization of the negative claims (a term
explained by Ijiri [1975, p. 65]) for the entire enterprise. For simplicity
sake, we used two populate modules in this illustration. The first one is
shown as Figure 11(a), and it simply aggregates (across both source and
vendor) the various accounts-payable. The second populate program—
Figure 11(b)—calculates other claims against the company. After this set
of programs is executed, there is another view available for use in the
database. That view is a table called “NEGATIVE CLAIMS,” and its
extension consists of three rows, one each for accounts-payable, accrued
wages, and dividends-payable.

Finally, Figure 12 illustrates the controlling module of the program hi-
erarchy: the materialization of the general ledger. The first half—Figure
12(a)—portrays the insert operations which first take data from the various

ACCOUNTS

PAYABLE AMOUNT

INVENTORY VENDOR # OWED
ALL. _ A%

ACCOUNTS

PAYABLE AMOUNT

EQUIPMENT VENDOR # OWED

ALL. __ A2

ACCUOUNTS
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SERVICES VENDOR # OWED
ALL. . A3

NEGATIVE

CLAIMS NAME AMOUNT

—
o

. ACCOUNTS PAYABLE (SUM. ALL. _A1 + SUM.ALL. _A2 + SUM. ALL. _A3)

Figure 11 (a). First Populate Module for Negative Claims.
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(SUM. ALL. _DDAMT - SUM. ALL. __DCD)

Figure 11 (b). Second Populate Module for Negative Claims.

second levels modules and which then place that data under the appropriate
debit or credit heading. The second half—Figure 12(b)—illustrates the
actual extension of the general ledger for the set of transactions that we

used.

DISCUSSION

We have now completed an overview of the operation of an events-based
relational system. Our examples and discussion have shown how relational



CLAIMS NAME AMOUNT
_PCNAME __PCA
NEGATIVE
CLAIMS NAME AMOUNT
__NCNAME __NCA
ECONOMIC
RESOURCES NAME AMOUNT
__ERNAME _ERA
CRD NAME AMOUNT
__CRDNAME __CRDA
COSTS NAME AMOUNT
__COSTNAME __COSTA
GENERAL
LEDGER ACCOUNT DEBIT CREDIT
| __PCNAME __PCA
: —_ NCNAME __NCA
I __ERNAME _ERA
) _CRDNAME __CRDA
R A __COSTNAME ——COSTA

Figure 12 (a). Populate Module for General Ledger Materialization.
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GENERAL
LEDGER ACCOUNT DEBIT CREDIT
ACCOUNTS RECEIVABLE $70,100.00 —
SUBSCRIPTIONS RECVBL $0.00 —
ACCOUNTS PAYABLE - $17.327.00
ACCRUED WAGES - $656.00
DIVIDENDS PAYABLE - $0.00
INVENTORY $37,290.00 -
EQUIPMENT $13,100.00 -
CASH $567,280.00 e
ACCUMULATED DEPREC - $145.00
COMMON STOCK $150.000.00
SALES $124,000.00
TRANSPORTATION $5,782.00 -~
ADVERTISING $1,000.00 .
CLEANING $650.00 —
RENT $1,600.00 —
COST OF GOODS SOLD $91,955.00 -
DIVIDENDS $6,000.00 -
WAGES $7,216.00 —
DEPRECIATION $145.00 —

Figure 12 (b). General Ledger Table.

Systems can be used to support innovative methods of tracking economic
events while simultaneously being used to meet the traditional general
ledger needs of accountants. The capability to support financial reporting
needs in accordance with generally accepted accounting principles is cer-
tainly the prime requirement of any computerized accounting system. How-
ever, it is a decided advantage for both accountants and non-accountants
if the database that meets that requirement is also available for the support
of less precise and less predictable managerial decision making needs. It
is a further advantage if that database is presented to all users in the simple
tabular forms shown here and if its data can be manipulated with powerful
yet friendly languages like Query-by-Example. An implementation pat-
terned after the one illustrated in this paper would clearly provide a sound
foundation for an information system designed to facilitate the develop-
ment and use of decision support systems [Sprague and Carlson, 1982].

Limitations in Scope

Caution should be exercised, however, in generalizing extensively from
our implementation experience, primarily because of its limited scope.

Our retail model was small scale and deliberately chosen for simplicity
of implementation. The quantity of transaction data (one month for a small
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company) was very low, and both the financial structure and the organi-
zational structure of the company was simple. If we had chosen, for ex-
ample, to include more complex equity structures or to include a
manufacturing component in our company, the structure of modules illus-
trated in Figure 6 would have become both wider and deeper.

Additionally, no cost-benefit decisions were made concerning mainte-
nance of data, physical storage, and program execution costs. We treated
all of these elements as free goods, and quite obviously, a large-scale system
would have to evaluate them in terms of normal database design tradeoffs
[Auerbach Editorial Staff, 1981].

Finally in terms of limited scope, we omitted some programmed main-
tenance operations which would be needed for an actual company. We
loaded in our data at month’s end instead of day-by-day, thus avoiding the
task of writing consistency maintenance mechanisms such as triggers [Es-
waran, 1976]. The commercial version of QBE does not support triggers
(which would, for example, decrease inventory quantity when a sale was
made), and our consistency maintenance mechanisms would have had to
be implemented via a programming language. We also would have needed
programmed formatting and manipulation assistance if we had chosen to
provide all the input-output enhancements (such as menu-driven entry of
data and variable format report writing) that are usually furnished with
commercial general ledger packages ([Yoder and Knight, 1984; Post, 1984]).
Most of these maintenance tasks, however, were ones that we had imple-
mented routinely with a programming language (FORTRAN) in some
previous database work [Gal and McCarthy, 1983a]. '

Insights Provided

Our project’s limited scope did not prevent us from encountering and
solving problems which we believe provide valuable insights to accounting
systems designers in a database environment. Two of these insights deserve
note.

First, the project demonstrated the utility of the REA framework in the
design and use of a computerized accounting system. We did not choose
to use the full REA event template [McCarthy, 1982, p. 564] for every
economic event tracked, because the information needs of such a small
company did not necessitate it. In particular, we did not build in a re-
sponsibility accounting system, and we therefore had no need to identify
inside economic agents. We also chose not to treat claims as base objects.
However, either of these cases could have been implemented differently
if we perceived that managers of our example company needed different
types of information. This particular case study did show that the REA
framework works well in producing a general ledger without first subjecting
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transactions to classification based on ledger accounts. It also provided
very interesting examples of some of the design tradeoffs discussed by
McCarthy [1982, pp. 565-75]. For example, system designers may gain
considerable insight into the very difficult area of procedural-declarative
tradeoffs by first viewing our method of materializing accounts-payable and
by then speculating under what circumstances it might be appropriate to
include this claim as a separate attribute of a base relation (instead of using
a program as we did).

Second, this project did demonstrate that a relational database could be
used effectively to implement an accounting information system. However,
we did encounter some problems in our work which might cause other
system designers to hesitate on choosing a pure relation system (like QBE)
for implementation. Most of these concerned the “set-at-a-time” orien-
tation of relational operators which on the one hand is a very appealing
theoretical feature but which on the other hand limits the possible per-
formance options and which also causes possible misunderstandings among
users. For example, we found the following problems in our work.

A. In calculating our inventory, we had to use a weighted average cost
scheme rather than FIFO or LIFO, because these latter methods require
calculations that use set elements one at a time (or tuple-by-tuple in re-
lational terms). To compute LIFO or FIFO, one needs to cost remaining
inventory units against past purchases one-by-one. By contrast, weighted
average uses the whole set of purchase events. The commercial version of
QBE is limited to specification operations [Tsichritzis and Lochovsky, 1982,
p. 74] which work on whole relations very well but which need programming
language assistance for tuple-by-tuple computations.

B. We discovered that certain relational operations have very limited
applicability to a realistic range of accounting entities. These operations
include set divtsions and set differences. For example, we materialized one
set of claims (accounts-payable for inventory) with a set difference oper-
ation, but we noted that such a computation would only work if the duality
relationship between our increment transaction (purchases) and our de-
crement transactions (cash disbursements) was functional (‘“‘n-to-1” or “I-
to-1"). This is somewhat of an unrealistic assumption because it excludes
“I-to-n” and “m-to-n” relationships [McCarthy, 1979, pp. 671-73]. It also
precludes modeling of situations where the second duality transaction pre-
cedes the first in time (such as prepaid expenses). Given this limited applic-
ability, most system designers may choose to discard these operations and
to use the simple arithmetic methods that we used for service payables
(see Figure 10 and accompanying discussion). These arithmetic methods
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retain some set-at-a-time flavor, because they range over all tuples in a
specified relation. However, they are much more general in their application.

C. Finally, with regard to the set orientation of pure relational systems,
we discovered a semantic mismatch between the accounting concept of
zero (that is $0.00) and the relational concept of a null set. For example,
if we had never received any cash receipts from particular customers, the
correct accounting action is to subtract zero from their individual accounts-
receivable when those claims are materialized. In relational or QBE terms
however, the customers’ null participation in the set of cash receipt trans-
actions results in them being excluded entirely from the listing of subsidiary
accounts. We grant that this is a relatively minor problem that occurs
infrequently, but it does give one an appreciation for how carefully specified
relational semantics must be.

We believe that the second and third of these problems are not significant,
because either they occur very infrequently or they can be anticipated and
dealt with by a knowledgeable designer at the early stages of implemen-
tation. The tuple-by-tuple access problem is significant. However, most
relational DBMS available today have recognized the necessity of aug-
menting their basic capabilities with sequence, decision, and iteration con-
structs.” We also believe that most of the non-set or navigational processing
can be done by professional programmers, leaving non-programmers with
the simpler relational features to use in their decision support work.

Recommendations

From our implementation experience and analysis, we have the following
recommendations for accountants who are attracted by the simplicity of
relational systems and who believe that the environment in which their
accounting systems will operate would benefit from an integrated database
approach.®

First, relational systems do have conceptual advantages, but users must
make sure they avail themselves of those advantages by careful choice of
a software package. When companies purchase a relationai DBMS for
either a large computer system [Schmidt and Brodie, 1983] or a small
computer system [PC Magazine Editorial Staff, 1984], they should insure
that the set-oriented operations which link tables (join) and which reduee
tables (selection and projection) are fully supported in a manner that non-
programmers will find easy to use. Most commercial systems will not be
as good as QBE in this regard, but there exists a variety of other carefully
designed methods for interacting with relational systems. Some of these
alternative systems have also been tested psychologically [Reisner, 1977,
1981; Welty and Stemple, 1981; Shneiderman, 1980], and many of the
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newer microcomputer packages have based their approaches on such es-
tablished methods.

Second, in contrast to the ease-of-use advantages discussed above which
are provided within the relational software one purchases, the design ad-
vantages of relational systems must be provided by the users themselves
through a formal approach to data analysis. In other words, a company
may use a relational DBMS and still have a database characterized by
inconsistency and redundancy. It is not necessary that designers of ac-
counting systems be intimately aware of all normalization research-—much
of which has evolved beyond the point of practical use—it is only necessary
that those designers be aware of a few elementary rules [Kent, 1983] for
avoiding maintenance anomalies in a database. A simple way to incorporate
such rules (and to gain other advantages as well) is to use a semantic
approach [Tsichritzis and Lochovsky, 1982] to design. Potential users who
are interested in database analysis methodologies which combine the use
of semantic models and normal forms may consult Martin [1983], Howe
[1983], or Hawryszkiewycz [1984].

Third, as we discussed in our choice of inventory valuation methods, the
set operations of a relational DBMS must be augmented by a capacity to
access tables one row at a time in sequence. Most commercial systems will
provide this capability via programming language extensions. The consol-
idated use of both navigation and specification languages will be best sup-
ported in an environment which delegates the operation of large application
systems (such as payroll and general ledger) to professional programmers
and which provides those programmers with both relational and non-re-
lational capabilities. Managers in need of decision support facilities can be
provided with relational views and languages in much the same manner as
we derived our “‘views” in this paper. An alternative method for supporting
this same environment would be to purchase software which provides pre-
programmed modules for the routine applications and relational capabil-
ities for the non-routine ones. This last approach is one on which many
software vendors are currently basing their database services.

Finally, we would recommend that users consider fully the REA ap-
proach to database design used in this paper. Because of our small-scale
example and because we ignored machine costs, we were able to support
a full events approach to our accounting system development. With the
present state of computer technology, users will have to consider such a
system as a theoretical ideal which must be adjusted when the task of
detailed analysis starts. However, this is how good database design meiir-
odologies work. Conceptual integrity is considered first, and realistic
concessions are made to implementation cost with a careful evaluation of
what is being lost in the compromise. Its semantic base insures that an
REA accounting system will be well-designed, and its emphasis on inte-
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gration will insure that maximum opportunity is afforded to use accounting
data in a wide variety of decision settings in an organization.
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NOTES

I. The QBE operators which identify certain rows (i.e., they isolate a horizontal subset
of a table) and which identify certain columns (i.e., they isolate a vertical subset of a table)
correspond to the relational algebra operations of “‘select”” and “project” respectively [Date,
1981, Chap. 12].

2. Thislinking of data across multiple tables using example elements is the QBE equivalent
of the relational algebra “join" operation [Date, 1981, Chap. 12].

3. The full transaction history, the full layout of all base tables, and the full specification
for all procedures is available in Gal and McCarthy [1983b]. The constraint component of
this implementation is outlined in Gal and McCarthy [1985].

4. Our data model had 18 entities and 23 relationships which resulted in 41 base tables.

5. Query-by-Example itself can be augmented with these capabilities by linking it with a
programming language. However, the linear syntax of QBE [IBM, 1980] which must be used
to perform this linking is not screen-oriented, and it does not possess any of the proven ease-
of-use capabilities that we have mentioned previously.

6. A beginning book which might help users decide whether or not their companies ought
to be using a database management system has been published by Date [1983].
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