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ABSTRACT: A limitation of existing accounting systems is their lack of knowledge 
sharing and knowledge reuse, which makes the design and implementation of new 
accounting systems time consuming and expensive.  An important requirement for 
knowledge sharing and reuse is the existence of a common semantic infrastructure.  In this 
article we use McCarthy’s (1982) Resource-Event-Agent (REA) model as a common 
semantic infrastructure in an accounting context. The objective is to make knowledge-
intensive use of REA to share accounting concepts across functional boundaries and to reuse 
these concepts in different applications and different systems, an approach we call 
augmented intensional reasoning.   Intensional reasoning is the active use of conceptual 
structures in information systems operations such as design and information retrieval.  For 
augmented intensional reasoning, the conceptual structures are extended with domain-
specific REA knowledge. Sections II and III describe different dimensions of augmented 
intensional reasoning: the REA primitives, the technological features needed to support 
augmented intensional reasoning, the need for epistemologically-adequate representations to 
make augmented intensional reasoning feasible, and the practical necessity of 
implementation compromises. Sections IV and V explore two uses of augmented intensional 
reasoning: design and operation of knowledge-based accounting systems.  The example in 
section V explains how augmented intensional reasoning works: (a) define the conceptual 
schema, (b) structure the conceptual schema in terms of REA (knowledge augmentation), 
(c) define a shareable and reusable accounting concept (claim), and (d) use the concept 
(claim) to derive information in different accounting cycles (revenue and acquisition).  
  
Key Words: Augmented intensional reasoning, Epistemological adequacy,  

Implementation compromise, Knowledge reuse and sharing, Procedural-
declarative tradeoff, REA accounting. 
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I. INTRODUCTION 
In the late 1990s, there has been a strong movement toward more active use of 

enterprise knowledge structures, movements characterized as enterprise modeling, 
knowledge management, and enterprise ontology development (Hayes-Roth 1997; Bernus et 
al.1998; Gomez-Perez 1998; Guarino 1998; Rolstatdas 1999). In these areas, there is a 
strong overriding insistence on explicit and persistent representation of enterprise 
knowledge structures so that these structures graduate from being simple requirements 
definition and analysis tools to being active components in systems operation and 
information retrieval.   

The objective of this article is to extend this knowledge management research by 
illustrating the active use of domain-specific knowledge structures in accounting 
applications.  We use the Resource-Event-Agent (REA) model (McCarthy 1982) to augment 
the enterprise schema with domain-specific knowledge. The active use of conceptual 
structures is known as intensional reasoning.  We use the term augmented intensional 
reasoning for the active use of conceptual structures augmented with the domain-specific 
REA structures imposed on top of the enterprise schema. The main advantages of 
augmented intensional reasoning are knowledge sharing across functional borders and 
knowledge reuse across different implementations. 

To apply augmented intensional reasoning, a number of technological and design 
requirements need to be fulfilled: (1) persistent existence of a common semantic 
infrastructure, (2) explicit representation of knowledge structures, and (3) existence of 
epistemologically adequate representations.  The common semantic infrastructure should 
support the homogeneous representation of domain-specific phenomena in a manner that 
endures after initial system analysis.  In our case, the infrastructure is the REA model, which 
supports an explicit and persistent semantic representation of the economic activities of a 
company across the value chain.  Epistemological adequacy is a metric we propose that 
expresses the degree to which a conceptual schema structures the economic activities of a 
company in terms of the REA model.  

We compare existing artificial intelligence (AI) accounting applications with our 
proposed knowledge-based systems to elucidate the advantages and requirements of 
augmented intensional reasoning as well as to demonstrate its implications for the design 
and operation of accounting information systems (AIS). Knowledge technology has been 
applied in accounting since the 1980s, in particular as expert systems that support audit and 
tax problem solving, e.g. ExperTAX (Shpilberg and Graham 1986), Planet (McGowan 
1996) and Comet (Nado et al. 1996).  Although they have been successful for specific, well-
defined tasks, existing AI accounting applications have some important limitations:  
 
x They lack a common knowledge architecture, which prevents knowledge sharing across 

functional borders.   Current systems are stand-alone applications, which means there is 
no interface with other intelligent accounting systems or with the production accounting 
(transaction processing) information system. 

x They are designed from scratch.  Existing accounting and non-accounting knowledge 
structures are not reused, which makes the design and implementation of knowledge-
based accounting systems time consuming and expensive. 
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Figure 1 depicts the limitations of existing knowledge-based accounting systems.  
The boxes on top show stand-alone intelligent systems, and the top portions of the boxes 
portray task-specific knowledge.  Task-specific knowledge is application-specific, such as 
the rules used to determine the creditworthiness of a customer.  The crosshatched areas 
represent knowledge that could be shared among two or more intelligent systems but which 
instead is embedded within each system.  The dotted lines show that intelligent applications 
routinely are not linked to the actual accounting information system and that the data needed 
from the AIS must be retrieved and formatted separately.   
 
-- INSERT FIGURE 1 HERE -- 
 

The importance of knowledge sharing and reuse has been recognized in recent years 
(Neches et al. 1991; Hayes-Roth 1997; Gomez-Perez 1998).  The major challenge for the 
next generation of intelligent systems is achieving a common knowledge architecture.  
Achieving a common knowledge architecture requires overcoming many integration 
obstacles: heterogeneity of representation formalisms, heterogeneity of implementation 
platforms (Prolog, Lisp, expert system shells, etc.), conflicting lexicons, and the lack of 
semantic interoperability (Musen 1992; Gomez-Perez 1998). In this article we focus on one 
dimension of knowledge sharing and reuse: achieving semantic interoperability.  

Semantic interoperability requires a knowledge-based infrastructure that is 
administered across functional boundaries and that is employable in different systems.  For 
accounting systems, this implies a semantic framework that can be shared across traditional 
cycle-oriented subsystems (such as accounts receivable, accounts payable and payroll) along 
the enterprise value chain and that can be reused by systems in companies of different sizes 
and in different sectors.  In order to support semantic interoperability in knowledge-based 
accounting systems, we use REA accounting rather than double-entry accounting as a 
starting point.  We do this because the double-entry paradigm gives primacy to account-
oriented classification, which conceals the semantic structure of the enterprise being 
modeled. When the double-entry filter is applied, most of the accountability data for a 
company (arising from its economic transactions with workers, customers, creditors, etc.) 
cannot be used in any knowledge-intensive fashion for non-financial decision purposes.  
REA accounting does not filter economic data, and it structures accounting and non-
accounting data in a homogeneous way.  All elements in the economic process are assigned 
a domain-specific role, and we use those role assignments to create a shareable and reusable 
semantic infrastructure.  Semantic interoperability would facilitate the use of transaction 
data in both accounting applications, such as claim materialization, and non-accounting 
applications, such as customer relationship management and supply chain coordination.   

Figure 2 shows a knowledge-based accounting system architecture for supporting 
knowledge sharing and reusability that has three major components: the accounting 
information system (ellipses), the REA-based semantic infrastructure (rectangles), and the 
augmented intensional reasoning component (cylinder).   
  
-- INSERT FIGURE 2 HERE -- 
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The AIS component is represented as two ellipses in the middle of figure 2.  The 
data part contains multidimensional descriptions of economic phenomena across the value 
chain.   Current ERP-type AIS store similar data (Davenport 1998).  ERP systems, however, 
lack the explicit and persistent representation of a semantically-structured schema 
(represented on the diagram by the outer ellipse), which contains a detailed description of a 
company’s economic phenomena in an REA model.  The enterprise schema has a dynamic 
nature.  Each company will have its own specific enterprise schema which changes over 
time.  An enterprise schema where elements are congruent with all parts of the REA model 
is called epistemologically adequate or full-REA. Epistemologically adequate 
representations are the heart of shareable and reusable knowledge-based accounting 
systems.  When the enterprise schema fails to comply with this representation commitment, 
the REA-based inference engine needs additional knowledge to draw conclusions.  The 
epistemological adequacy metric can be considered on a continuum where decreases in 
epistemological adequacy (known as implementation compromises) result in a decrease in 
knowledge sharing and reuse.  

The REA-based semantic infrastructure of figure 2 consists of REA primitives and a 
taxonomy of shareable and reusable accounting concepts.   REA primitives include the basic 
objects and the relationships between these elements. The taxonomy is a dynamic set of 
accounting concepts that are defined in terms of REA primitives or other REA-based 
concept definitions.  

The cylinder in figure 2 represents the special-purpose inference engine that uses 
REA primitives and the taxonomy of REA-based concepts to reason with the elements of 
the enterprise schema. Reasoning with conceptual schema definitions or intensions is called 
intensional reasoning.  Because it uses the REA structures imposed on top of the conceptual 
schema, it is called augmented intensional reasoning.  Augmented intensional reasoning is a 
reusable technique, and the degree of that reusability depends on the epistemological 
adequacy of the enterprise schema.  

The dotted boxes at the top of figure 2 represent task-specific knowledge needed for 
individual applications. They correspond to the top white boxes of figure 1. Because it is 
neither shareable nor reusable, this knowledge is not part of the common knowledge 
architecture.   
 In summary, the objective of this article is to explore the knowledge-intensive use of 
REA for sharing accounting concepts across functional boundaries and for reusing these 
concepts in different applications and different systems.  The technique we use to 
accomplish this objective is augmented intensional reasoning.  Augmented intensional 
reasoning requires: 
 
x The existence of a common semantic infrastructure (the REA model),  
x The explicit representation of the knowledge structures,  
x The congruency of the knowledge structures with all parts of the REA model, and  
x The existence of a specific inference engine that can reason with REA primitives, the 

taxonomy of REA concepts, and the explicitly recorded knowledge structures. 
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II. THE RESOURCE-EVENT-AGENT MODEL 
Adopting a semantic or conceptual description of an accounting object system has 

the benefits of: (1) harmonizing human communication to give consistent definitions across 
different accounting and non-accounting user views, and (2) focusing attention on the 
economic phenomena instead of on implementation and access details.  These benefits  
permit the complexity of system development and use to be managed. Adopting a semantic 
description, however, requires a representation formalism, “a set of conventions about how 
to describe a class of things"  (Winston 1992, 16).  The Entity-Relationship (E-R) model 
(Chen 1976; McCarthy 1979; Batini et al. 1992) is used here as representation formalism.  

The Resource-Event-Agent (REA) model (McCarthy 1982) is a generalized 
semantic representation of accounting phenomena that guides the conceptual modeling of an 
enterprise schema and is used as the basis for the semantic infrastructure developed here. A 
simplified version of the REA model is illustrated in E-R form in figure 3.  Without a loss of 
generality, we use two binary control relationships instead of the original ternary control 
relationship (McCarthy 1982) and omit the responsibility relationship between inside agents 
(like departments that report to each other).  Figure 4 illustrates a possible instantiation 
resulting from applying the REA model with the E-R conventions of Batini et al. (1992).  
This example illustrates a typical REA-based conceptual description for the revenue cycle.1 
 
-- INSERT FIGURE 3 HERE -- 
-- INSERT FIGURE 4 HERE -- 
 

The REA model (figure 3) can be considered as a generic description of an 
Economic Event, 2 and when both sides of the Duality relationship are filled, it is a generic 
description of an economic exchange.  The domain theory suggests that at least the 
following three aspects of an Economic Event must be described:  
 
1.  Its Stock-Flow relationship with Economic Resources. Figure 4 illustrates that the 

Economic Event Sale results in an Outflow of the Economic Resource Product and 
the Economic Event Cash Receipt results in an Inflow of the Economic Resource 
Cash.  Economic Events cannot be modeled without identifying the Economic 
Resources (or scarce means) they affect.  Additionally, each modeled Resource 
should participate twice in Stock-Flow associations: one for Inflow and one for 
Outflow.3 

 
 2.  Its Control relationship with Economic Agents inside and outside of the firm. The 

example illustrates that an Economic Agent Salesperson will be held responsible 
                                                                                                                                                                               

1. The revenue cycle shown here shows only one resource decrement. More realistically, most cycles 
typically would also include other less prominent resource decrements (such as the use of labor or 
the use of an asset like a vehicle) called transaction costs in the process representation.  In the 
interest of simplicity, these decompositions and additional decrements have been omitted from the 
figure.  A more complete enumeration of a revenue cycle is available in Geerts and McCarthy 
(1997). 

2. A capitalized term refers to an entity type or object type (e.g. Sale). A capitalized term in italics 
refers to an REA primitive (e.g. Economic Event). 

3. Because of space limitations, the example of Figure 4 does not show both flows for Product and 
Cash.  See figure 7 later. 
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(Control) for an Economic Event Sale and the corresponding Outflow of the 
Economic Resource Product.  An Economic Agent Cashier will Control the Inflow of 
the Economic Resource Cash through the Economic Event Cash Receipt.  Customer 
is the External Agent for both of the Economic Events Sale and Cash Receipt. 

 
 3.  Its Duality relationship with another Economic Event where the increment Events 

are paired with decrement Events in a give-take relationship or exchange. The 
example in figure 4 illustrates a give-take or Duality relationship between the 
Economic Event Sale (decrease in Economic Resource Product) and the Economic 
Event Cash Receipt (increase in Economic Resource Cash).   

 
This article explores the use of the REA model as the foundation for a semantic 

infrastructure for knowledge-based accounting systems. Resource, event, agent, stock-flow, 
control, and duality are the REA primitives, represented as the smaller rectangle in figure 2. 
A conceptual schema that describes all aspects of economic events in the accounting object 
system in accordance with the REA model of figure 3 is termed full-REA (Geerts 1993; 
Geerts and McCarthy 1994).  Full-REA means that economic events participate fully in each 
of the three relationships (stock-flow, control, and duality) mentioned above. 
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III. AUGMENTED INTENSIONAL REASONING IN KNOWLEDGE-BASED 
ACCOUNTING  SYSTEMS 

Different Modes of Knowledge-Intensive Assistance in the Design and Operation of an 
AIS 

A definition of a concept is also called the intension of the concept.  The extension 
of a concept consists of all the actual objects the definition applies to.  For example, the 
intension of the object Sale defines the common characteristics of Sale (also known as 
attributes), the relationships the object Sale is involved in, supertypes and subtypes of Sale, 
and constraints that apply to Sale.  The set of economic transactions to which the Sale 
definition applies, the actual sales transactions, constitutes its extension. A conceptual 
schema contains intensional descriptions for objects and relationships among objects in the 
application domain. This article focuses on the potential of augmented intensional reasoning 
in an accounting environment, that is, on reasoning processes that use intensional structures 
augmented with domain-specific knowledge. The actual domain-specific augmentation 
proposed here involves REA classifications. In terms of REA, Sale is an Economic Event, 
and Sale participates in a Stock-Flow relationship (with Product), a Duality relationship 
(with Cash Receipt), a Control relationship with an Internal Agent (Salesperson) and a 
Control relationship with an External Agent (Customer).  The structuring of the objects in 
terms of REA primitives adds domain-specific knowledge to the conceptual schema.  

There are three modes of knowledge-intensive assistance in the design and operation of 
accounting systems: (a) routine design and operation of an AIS, (b) knowledge-intensive 
design and routine operation of an AIS, and (c) knowledge-intensive design and operation of 
an AIS.  The three modes are shown from top to bottom in figure 5 where all three instances 
follow the left-to-right representation and implementation mapping of an accounting 
universe of discourse (AUoD) through a design process into a conceptual description and 
then further through a conclusion materialization process to operational user views.  The 
crosshatched portions in figure 5 indicate knowledge augmentation or assistance.  All three 
modes use methods knowledge, which helps the designer build grammatically correct 
conceptual descriptions. For example, methods knowledge can be used to report 
grammatical inconsistencies in an E-R model such as “an entity exists for which no 
relationship has been specified.”  Methods knowledge is used now in many CASE tools to 
analyze conceptual representations (De Troyer et al. 1988; Batini et al. 1992; Booch et al. 
1999).  
 
-- INSERT FIGURE 5 HERE -- 
 
Routine Design and Operation of an AIS 
  The design and operation processes in figure 5a are routine in the sense that they are 
unguided by any formal enterprise model (such as REA).  No common semantic   
infrastructure is used for design or operation.  This will most likely result in inconsistent 
representations of similar phenomena across functional boundaries, and the form of the 
conceptual descriptions will vary from company to company.  Further, no taxonomy of 
shareable and reusable accounting concepts can be built without a common semantic 
infrastructure. Instead, an artifactual set of procedures or programs will be constructed to 
meet the reporting and decision needs of individual users.  
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Knowledge-Intensive Design and Routine Operation of an AIS 
 In knowledge-intensive design and routine operation (figure 5b), REA is used as a 
formal enterprise model to structure the conceptual description of the accounting object 
system.  The extra crosshatched portion in the design process box represents the use of 
domain-specific knowledge to assist the design process. CASE tools can support 
knowledge-intensive design.4  For example, such a CASE tool would tell the user that an 
Economic Event needs to participate in a Duality relationship. The REA model is of great 
value in developing a consistent conceptual structure for the accounting object system even 
though the REA structures are employed solely as a starting point for final implementation 
design. The enterprise schema in figure 5b is neither explicit nor persistent, and the 
conclusion materialization process will actually use artifactual sets of procedures, just like 
the routine design approach did.   This is a common situation when database technology is 
used as implementation platform for an AIS. Database technology is not capable of making 
intensional structures explicit, and thus it is not able to use them for reasoning on an ongoing 
basis.  The domain-specific knowledge that is used to structure the accounting object system 
is scattered during the actual database design and implementation phases. A common 
semantic infrastructure does not suffice by itself to accomplish augmented intensional 
reasoning; technological features are important as well.  
 
Knowledge-Intensive Design and Operation of an AIS  
 In knowledge-intensive design and operation, domain-specific knowledge consisting of 
repeated, guided instantiations of the REA model is used as knowledge-intensive assistance 
during the design process.  Figure 5c contains two additional crosshatched portions: the 
explicitly recorded conceptual schema and the taxonomy of shareable and reusable 
accounting concepts (declarative descriptions).  The crosshatched conceptual structure in the 
middle corresponds with the enterprise schema in figure 2 and is used to assist both the 
design process and the conclusion materialization process. The crosshatched portion in the 
conclusion materialization box in figure 5c contains the REA-based definitions that are part 
of the larger box in figure 2. The full effect of augmented intensional reasoning is realized 
during the conclusion materialization process. During routine operation (figures 5a and 5b), 
all user views are produced entirely with programs, and they do not share generic patterns 
that are part of the common semantic infrastructure.  This is very different from our 
proposed new ways of thinking in which information retrieval relies heavily on explicitly 
recorded REA structures. Economic phenomena like claims are materialized first with an 
intensional pattern match and second with a summation of extensional occurrences like 
individual amounts of specific sales.  The main difference between the architectures in 
figures 5b and 5c is the ability of the technology used in figure 5c to represent the enterprise 
schema explicitly and to use it for reasoning on a regular basis.  The white portion in the 
conclusion materialization box in figure 5c represents task-specific knowledge and 
corresponds with the dotted boxes on top of figure 2.  
 
Aspects of Augmented Intensional Reasoning 
 Three related aspects of augmented intensional reasoning are: (1) the procedural-
declarative transformations effected by the domain theory, (2) the importance of 
epistemologically-adequate representations, and (3) the implications resulting from 
                                                                                                                                                                               

4. See Geerts et al. (1996) for an enumeration of such CASE possibilities.  
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implementation compromises. The procedural-declarative transformations make information 
retrieval in AIS more general and theoretical. Epistemologically-adequate representations 
and implementation compromises are related to the economic feasibility of augmented 
intensional reasoning. These three subjects warrant individual explanation. 
 
Procedural-Declarative Transformations 

“As theory progresses [in a particular field of inquiry], more of the knowledge can 
be removed from procedures and put in declarative form” (Sowa 1984, 24). With respect to 
the actual construction of accounting systems, the availability of a domain theory of 
accounting makes procedural-declarative transformations possible. 
 

Sowa (1984, 23, following Simon 1969) uses the example of constructing a circle to 
illustrate the consequences of procedural-declarative transformations: 
 
How: To construct a circle, rotate a compass with one arm fixed until the other arm has 

returned to its starting point. 
 
What: A circle is the locus of all points equidistant from a given point. 
 
Other procedures can be conceptualized for constructing a circle, such as rolling a piece 
of clay and cutting a cross-section.  These procedures illustrate Sowa’s (1984) 
conclusions: 
 
    1. Without the declarative description (the what), it is difficult to show how the 

different procedures (the how) relate to each other.  
 
    2. The declarative description covers the different procedures.  
 

Similar conclusions appear when we compare how accounting phenomena like 
claims are supported by database accounting systems (figure 5b) and knowledge-based 
accounting systems (figure 5c). 

To support claims information in a database accounting system, conclusion 
materializations (also named view definitions) are needed for the different individual types 
of claims that may result from the accounting information structure under consideration 
(e.g., accounts receivable, accounts payable or advance receipts). For each of these, we need 
to describe precisely how they are materialized from the data. A possible definition for 
accounts receivable is: 
 
How: Determine trade accounts receivable by subtracting the total amount of the cash 

receipts from customers from the total amount of sales made by customers. 
 
Some immediate consequences of such an organization are:  
 
  1. Modifications in the enterprise schema (extending the object structure or 

changing the constraint values) may imply a revision of such definitions. 
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 2. The definitions for accounting phenomena like claims are largely application 
specific.  

 
On the other hand, to support claims information with a knowledge-based AIS such 

as the ones in figures 2 and 5c, it suffices to describe what a claim is in terms of the domain 
theory (REA). Such a declarative definition for claims is: 
 
What: A claim with an outside agent exists where there is a flow of resources with that 

agent without the full set of corresponding instances of a dual flow.5 
 

The reasoning component of an AIS may determine the different claim types 
starting from the declarative description of claim. The actual occurrences of the claim 
concept for the accounting object system under consideration depend on the enterprise 
schema. Information about a specific claim type can be obtained from a more precise 
declarative description. As a result of these procedural-declarative transformations, the 
extension of claims will vary with modifications in the enterprise schema, and the 
definitions of accounting phenomena like claims are largely application-independent. 

 
This independence represents an important opportunity for accounting systems 

designers because it opens up the possibility of developing a general accounting framework 
consisting of REA-based definitions of phenomena like claim, asset, and activity (Geerts 
1993). This general accounting framework is represented by the taxonomy box in figure 2.  
The concepts that are a part of this framework can be shared across functional boundaries 
and can be reused by all accounting information systems that commit to an REA-based 
semantic infrastructure.  The extensions for the different accounting phenomena defined 
would be determined from the specified enterprise database.  A formal measure of an 
accounting system's ability to support such a scheme is epistemological adequacy.6  We 
extend this AI notion to accounting next.     
 
Epistemological Adequacy 

The result of the knowledge augmentation process described above is that 
accounting information is derived in a much more general and theoretical manner. The main 
tasks are developing operational definitions of accounting phenomena in terms of the 
domain theory and then explicitly describing them. The feasibility of augmented intensional 
reasoning in knowledge-based accounting systems depends on the epistemological adequacy 
of the enterprise schema.  

McCarthy (1987) explained epistemological adequacy in accounting 
representations as “the ability to represent definitional features of the environment 
faithfully.”  Satisfying the feasibility criterion leads to our heuristic for determining such 
adequacy: if a representation allows the full extent of intensional reasoning in materializing 
data-dependent conclusions and in enforcing integrity constraints, its epistemological 
                                                                                                                                                                               

5. For simplicity purposes in the example of Figure 4, we assume a maximal cardinality of “1” for 
the participation of both economic events in the duality relationship.   

6. See McCarthy and Hayes (1969) for John McCarthy's original ideas on epistemological adequacy. 
Lifschitz (1990, 3) characterizes McCarthy’s notion as “A representation is epistemologically 
adequate if it can be used to express the facts that can actually be discovered with the available 
opportunities.” 
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features are adequate. Anything less means that we strive for a higher degree of 
representational faithfulness. 

Epistemological adequacy is a very high standard for accounting systems, and 
even approximate adherence to such a standard is unlikely soon.  Impediments to 
attaining such a standard include the storage structures and data access mechanisms of 
existing computer systems and the representational difficulties of some REA primitives.   
 
Implementation Compromise 
 Implementation compromise means taking some modeled component of the real 
world (gathered during initial systems analysis) and discarding it during actual system 
construction.  In present-day accounting systems, incomplete REA schemas (as in McCarthy 
1982, 573-4; Geerts 1993, 69-96; Rockwell and McCarthy 1999, figure 4) are acceptable 
and even expected from a cost/benefit point of view.  The lack of epistemological adequacy 
will limit the reasoning capabilities of a system or burden its reasoning component with 
exception handling.  Procedural specifications will be needed to handle cases with 
insufficient knowledge about the underlying phenomena or to deal with exceptions.  Let us 
suppose, for example, that the Duality relationship between Sale and Cash Receipt in figure 
4 is not explicitly represented.  Arguments for the substantive dismissal of this Duality link 
can be found in the case where the company tracks receivables only by amount (i.e., a 
balance-forward system). While this procedural solution is acceptable from an information 
systems implementation point of view, the loss of knowledge is extensive.  Pattern matching 
for deriving instantiations for a generally-defined concept like claims becomes hard or 
impossible.  Geerts (1993) contains different examples of situations where a decrease in 
epistemological adequacy is compensated by extra procedural specifications. 
    

 
IV. KNOWLEDGE-INTENSIVE AIS DESIGN: THE CREASY ENVIRONMENT 

Designing knowledge-based accounting systems with the REA model as the 
common semantic infrastructure requires a development environment.  We have built one 
for this purpose called CREASY: Conceptualizing REA SYstems. The environment 
attempts to support knowledge-intensive design by exploiting both methods knowledge and 
domain-specific knowledge.  Existing CASE tools are inadequate for this purpose because 
they do not use domain-specific knowledge to support conceptual design (Geerts et al.  
1996).  This section explains how CREASY employs augmented intensional reasoning in 
support of knowledge-intensive design and how CREASY refines and integrates augmented 
intensional structures into applications.  The CREASY environment is implemented in Arity 
Prolog (Arity 1988). 
 
-- INSERT FIGURE 6 HERE -- 
 

The first module, supporting conceptual schema design (northwest part of figure 
6), provides the ability to develop a specification in terms of the E-R model.  The module 
converts the semantic specifications for entities, relationships, attributes, and constraints of 
an E-R schema to a format manageable by the inference engine. This methods knowledge 
will be used for different purposes during different phases of system construction and use.  
During design, it is used to check the grammatical validity of added specifications.  At the 
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operational level, it may be used to ensure that the behavioral implications of the static 
specifications are attainable (Geerts 1993). 

The structuring of the accounting object system is supported by the domain-
specific design module (northeast corner of figure 6), which permits reclassification of 
all entity types during the conceptual analysis as Resources, Events, or Agents.  Utilizing 
this extra layer of knowledge augmentation, the system searches for relationships 
between the different reclassified entities and labels them as Stock-Flow relationships, 
Control relationships, or Duality relationships.  For the detected Stock-Flow 
relationships, an extra classification as Inflow or Outflow is required.  Upon request, 
CREASY analyzes a specified enterprise schema.  Inconsistencies, such as duality 
relationships connecting two inflows, events not participating in a duality relationship, 
and resources for which no stock-flow relationship can be found, are reported to the 
designer for refinement or corrective action. In the CREASY environment, 
implementation compromises are dealt with procedurally.  

With a frame editor, the operational design module (southeast part of figure 6) 
refines the generic frame knowledge and slot definitions. Default values and procedural 
attachments can be added to specific slots. For frames classified as REA primitives, slot 
definitions can be extended with role assignments.  

The operational system module (southwest corner of figure 6) can generate a 
prototype for the system. A user interface will be built by CREASY according to the defined 
structure. Concept definitions and necessary procedural code (e.g., for implementation 
compromises) can be added with the application builder interface. The prototype will 
support operational activities such as data entry, schema analysis, and query formulation. 
Each of these activities can rely on the different types of knowledge made explicit 
throughout the design process. 

 
   

V. KNOWLEDGE-INTENSIVE AIS OPERATION 
Code Components of Knowledge-Based AIS  

The operation of a knowledge-based AIS based on our prior definitions is largely 
reduced to the management of a set of declarative descriptions related to the accounting 
object system. The application of these descriptions in solving problems is principally the 
task of the reasoning component of the system. Geerts (1993) provides examples of 
applications relying on the explicitly-recorded enterprise schema and augmented intensional 
reasoning.  Here, we illustrate a portion of a complete system as proof-of-concept for 
augmented intensional reasoning and the use of REA accounting as a common semantic 
infrastructure. The accounting object system is the one portrayed in figure 7.7  Part of the 
Prolog code for this system appears in the appendix,8 organized in five components: the 
conceptual schema definitions, the accounting-specific classifications, the REA-based 
definitions of accounting phenomena, the database, and the supportive definitions. Each 
appendix component is explained with a narrative below.  In the first two components, an 
intensional structure (including its interpretation in terms of the domain theory) is defined. 
This structure corresponds to the REA-structured enterprise schema (outer ellipse) in figure 
                                                                                                                                                                               

7. This object system is a combination of a revenue and an acquisition cycle with inside agents not 
depicted because of space limitations.    

8. For the complete set of definitions see Geerts (1993, 184-192). 
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2.  The third component corresponds to the large box in figure 2 and illustrates declarative 
and domain-specific programming. The REA-based definitions of accounting phenomena 
appear as declarative descriptions in the conclusion materialization process in figure 5c. The 
database includes the extensional description of the accounting object system (i.e., the actual 
data occurrences) and corresponds with the inner ellipse in figure 2. Finally, the fifth part 
reflects the programming code needed to make intensional reasoning work and corresponds 
to the cylinder in figure 2.   
 
-- INSERT FIGURE 7 HERE -- 
 
Conceptual Schema Definition 

The conceptual schema definitions contain an explicit representation of the E-R 
schema elements: the intensional structure. The elements are represented as Prolog clauses 
(facts), and they may be considered as the output of CREASY's conceptual schema design  
module.   

Entity type and attribute type definitions are self-explanatory.  In the three-argument 
relationship definition (relationship/3),9 the first argument expresses the relationship name, 
the second argument expresses the list of entity types involved in the relationship (only 
binary relationships are included), and the third argument expresses a unique identifier for 
the whole relationship. This identifier is used as a surrogate for the actual identification, 
which consists of relationship name and participating entity types. Its use simplifies the 
implementation.  

Constraints are also declaratively specified (constraint/4). The first data value (third 
argument) expresses the minimal cardinality constraint; the second data value (fourth 
argument) designates the maximal cardinality constraint. The second constraint clause for 
instance “constraint(sale,r1,1,1)” expresses that “a Sale occurrence appears exactly once in 
the relationship r1” or alternatively “exactly one Customer is involved in a Sale.”  Constraint 
specifications for attributes have been omitted.  

We also record explicitly the attributes used for identification (id) purposes.  For 
example, customer_nr identifies customers (description(customer,customer_nr,id)).  These 
clauses are examples of role declarations. 

Some uses of the explicitly-represented conceptual schema elements are:  
 
 1. At the design level, they can be used for consistency checking in terms of methods 

knowledge which occurs in CREASY’s conceptual schema design module. 
 
 2. They can be used in support of a data dictionary system.  Queries like: “Which 

entities are specified?”, “Which data elements are used to describe an entity?”, and 
“To which constraints is the participation of an entity in a relationship subjected?” 
can be answered easily.  An example of such a query is illustrated below where the 
first line is the natural language query, the second line is the query in Prolog, and 
the last three lines are answers from the system. 

 

                                                                                                                                                                               
9. In Prolog, the notation “clause-name/number-of-arguments” is used to refer to clause definitions. 

Thus we have five different definitions in the first subsection of the appendix:  entity/1, 
relationship/3, attribute/2, constraint/4, and description/3. 
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  ** Which data elements are used to describe sales?  
  ?- attribute(sale,AttributeName). 
  AttributeName = sale_nr; 
  AttributeName = sale_amount; 
  AttributeName = sale_date; 
   
 3. At the operational level, they can be used to determine the behavioral implications 

of constraint definitions, e.g., “Which data elements are mandatory for a valid 
instance of an entity?” 

 
Accounting-Specific Classifications 

Entity types and relationship types are classified in terms of generic classes whose 
specific roles were explained in section II: {Resource, Event, Agent, Stock-Flow, Duality, 
Control}.  For Economic Events, flow direction must be specified as well: {Inflow,Outflow}. 
The consistency of these definitions must be ensured at the design level, checking that is 
performed by CREASY's domain-specific design module. 

Other types of accounting-specific classifications exist that are excluded from the 
code in the appendix.  One of the most important of these is the assignment of specific roles 
to attributes. For the materialization of accounting reports, knowledge of the relationship 
between accounting reporting items and the actual data is required.  This knowledge can be 
made explicit by the assignment of specific roles to attributes.  Financial accounting 
applications, for example, require at least amount and recording date attributes for economic 
events.  For product costing purposes, cost amount declarations must be specified.  A wide 
range of applications relying on role declarations is illustrated in Geerts (1993).  Such 
accounting-specific role declarations can be added by CREASY's operational design 
module. 
 
REA-Based Definitions of Accounting Phenomena  

A limited set of REA-based definitions of accounting phenomena is included in the 
knowledge base. The definitions for Control, Stock-Flow, and Duality relationships are 
similar and combine object definitions and REA classifications. The Control relationship is 
defined as: 
 

1. A relationship that has been classified as being of the REA-type Control, and 
2. For which one of the entity types participating in the relationship has been 

classified as being of the REA-type Agent, and  
3. For which the other participating entity type has been classified as being of the 

REA-type Event. 
 

An exchange combines an Inflow Economic Event and an Outflow Economic 
Event by means of a Duality relationship with the same external Agent involved.  In 
Prolog, the latter condition is ensured by using the same variable name (Agent) for the 
external Agent in both control definitions. Exchange is a declarative definition that 
combines other definitions.  

These REA-based definitions of accounting phenomena are largely independent of 
specific accounting object systems. This makes them useful for developing a reusable 
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accounting framework based on concepts like Duality relationships and exchanges. They 
may be embedded in the knowledge base as standard concepts on which further applications 
may be built. These standard concepts are represented as shareable and reusable concepts 
(the large box) in figure 2.  The extension of these concepts (i.e., “the set of all existing 
things to which the concept applies” (Sowa 1984, 11)) depends on the actual conceptual 
description of an accounting object system. 

These definitions can be used to draw conclusions from the explicitly-recorded 
accounting information structure. The application of augmented intensional reasoning for 
semantic information retrieval is illustrated by the following queries.10  
 
**  In which economic events are vendors involved? 
?-  control(Event,_,vendor). 
 Event = cash_disbursement; 
 Event = purchase; 
 
** Which events may lead to spending? 
?- duality(EventI,_,cash_disbursement). 
 EventI = purchase; 
 
**  Which events affect the availability of product? 
?- stockflow(Event,_,product). 
 Event = sale; 
 Event = purchase; 
  
Such queries can be posed using the user-interface of CREASY's operational system 
module. 
 
The Database 

While the three previous components contained general statements defining the 
accounting object system, the database component illustrates how concrete data occurrences 
or tokens are stored in the database. The database is a set of value facts. The value/4 
predicate describes both entity type instantiations and relationship type instantiations. 

For entity type instantiations, the arguments of the value/4 predicate are entity type 
name, identification value of the entity occurrence, attribute name, and value. For simplicity, 
the id attribute value identifies entity instances.  

For relationship type instantiations, the arguments of the value/4 predicate are 
surrogate identifier of the relationship type, identification value of the relationship type 
occurrence, name of the participating entity type, and the id attribute value of the 
participating entity type occurrence.  
 
Supportive Definitions 

Extra clauses, necessary for making the system work, have also been specified in the 
appendix. Four supportive predicates employed for interpreting the actual data in terms of 
REA-based accounting definitions (the intensional-extensional link) are id/2, occurrence/2, 
part/4 and relpart/5. 
                                                                                                                                                                               

10. The outcomes of these queries are based on the actual implementation of Figure 7. 
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id/2   Determines the attribute name used to identify particular occurrences of a 

real world object.  
 
occurrence/2 Determines the extension of a particular entity type in terms of the 

identification attribute.  
 
part/4   Determines, depending on the existence of a corresponding value, either (a) 

the relationship type in which an entity instance is expected to occur or (b) 
the relationship occurrence in which an entity instance actually occurs. 

 
relpart/5  Determines the entity type occurrences participating in a specific relationship 

type occurrence.  
 

A fifth supportive definition (dualrel/3), unrelated to the intensional-extensional link, 
has also been included.  The previously mentioned duality/3 relationship imposes a fixed 
inflow/outflow pattern of "duality(Inflow,_,Outflow)."  The dual/3 relationship is similar to 
the duality relationship with the exception that the fixed order is not imposed.  The 
invocation of dualrel/3 as a substitute for duality/3 is situation specific. 
 
Claim Materialization 
Claim Definition 

We illustrate operation of a knowledge-based accounting system by showing the 
effect of augmented intensional reasoning on the materialization of “claim with external 
party” information. An accounting concept like claim with outside party is implemented by 
adding the REA-based definition of the concept to the knowledge base (the taxonomy of 
shareable and reusable concepts box in figure 2). The following Prolog clause defines the 
claim concept: 
 
** Generic Definition for the Claim concept. 
claim(Agent,AgentValue,Event,EventValue,FutureEvent) :- 
 dualrel(Event,Dual,FutureEvent), 
 part(Event,Dual,DualValue,EventValue), 
 not relpart(Event,EventValue,Dual,FutureEvent, 
      FutureEventValue), 
 control(Event,Control,Agent), 
 relpart(Event,EventValue,Control,Agent,AgentValue). 
 

The arguments of the claim/5 predicate are a mixture of intensional (type) and 
extensional (occurrence) elements. The three intensional elements are Agent, Event, and 
FutureEvent. The extensional arguments are values for Agent (AgentValue) and Event 
(EventValue). The values are those of the identification attribute of the entity types (Agent 
and Event). The different elements of the definition are explained next.  
 
dualrel(Event,Dual,FutureEvent).  
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Intensional. The explicitly-recorded accounting information structure (intension) is 
consulted to determine the Economic Event entity types (Event) that are involved in a 
Duality relationship (Dual).  
 
part(Event,Dual,DualValue,EventValue). 
not relpart(Event,EventValue,Dual,FutureEvent, 
          FutureEventValue).   
Extensional. The part/4 predicate determines all Event occurrences that are assigned to 
the Dual relationship. The relpart/5 predicate determines Event occurrences that are part 
of completed exchanges.  Negation (not) leads to the set of unrequited Event occurrences. 
In combination, these two predicates determine the subset of Event occurrences that are 
assigned to the Dual relationship and are not yet linked to their give-take dual.  They 
represent partially-performed exchanges with FutureEvent as terminator. 
 
control(Event,Control,Agent).  
Intensional. The control/3 predicate is used to determine the Control relationship type in 
which the Event type under consideration is involved and the Agent type involved in the 
same relationship. 
 
relpart(Event,EventValue,Control,Agent,AgentValue).        
Extensional. The relpart/5 predicate determines the actual instantiation of the Agent type 
corresponding with the Event type occurrence. 
 

The claim concept definition can be improved by capturing more domain knowledge 
as part of the definition, which will improve the efficiency of Prolog's inference engine. For 
situations where the participation of the Event type in the Dual relationship is constrained to 
a [1,1] relationship for example, claims cannot occur. This means that receivables or 
payables will not occur in situations constrained to cash transactions. Making this 
knowledge explicit increases efficiency because the system can avoid searches for which no 
result can exist. The improved definition for claim is: 
 
** Improved Definition for the Claim Concept. 
claim(Agent,AgentValue,Event,EventValue,FutureEvent) :- 
 dualrel(Event,Dual,FutureEvent), 
 not constraint(Event,Dual,1,1), 
 part(Event,Dual,DualValue,EventValue), 
 not relpart(Event,EventValue,Dual,FutureEvent,  
        FutureEventValue), 
 control(Event,Control,Agent), 
 relpart(Event,EventValue,Control,Agent,AgentValue). 
 

The claim definition can be extended to distinguish between positive and negative 
claims.  A declarative description for the positive claim concept is: 
 
 A positive claim with an outside party exists where there is an outflow of resources 

without a full set of corresponding instances of a dual flow. 
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Positive claims are the subset of claims where the initiator Event effects an Outflow of 
Resources. In Prolog, this definition can be expressed as: 
 
positive_claim(Agent,AgentValue,Event,EventValue,FutureEvent) :- 
 rea(Event,outflow), 
 claim(Agent,AgentValue,Event,EventValue,FutureEvent). 
 
Execution of the Claim Definition 

The claim/5 predicate describes partially-performed exchanges. The extension of the 
claim concept for the actual implementation of figure 7 is illustrated in table 1.11 The gray-
colored row in table 1 emphasizes the mixture of intensional and extensional elements in 
semantic information retrieval. 
 
-- INSERT TABLE 1 HERE -- 
 
This table mixes four claim types:   
 

x An Inflow of Cash (Event: cash_receipt) with no corresponding Outflow of Products 
(FutureEvent: sale) 

x An Inflow of Product (Event: purchase) with no corresponding Outflow of Cash 
(FutureEvent: cash_disbursement) 

x An Outflow of Product (Event: sale) with no corresponding Inflow of Cash 
(FutureEvent: cash_receipt). 

x An Outflow of Cash (Event: cash_disbursement) with no corresponding Inflow of 
Product (FutureEvent: purchase). 

 
Rather than being explicitly defined, claim types are determined by the inference 

engine based on the explicitly-represented accounting information structure. Claim types are 
added or removed by modifying this structure.  If the example included the payroll cycle, 
the inference engine could recognize an incomplete exchange between Labor Service 
Acquisition and Cash Disbursement as an additional instance of claim (wages payable). 

Actual claims are instantiations of claim types. The extension of a claim type varies 
as a result of database modifications. For example, inserting the 
‘value(r3,r32,cash_receipt,'0003')’ fact to the database would cause the fourth row in table 1 
to be removed. 

The claim definition can be refined further. We can ask, for instance, for all actual 
instantiations of a particular claim type. The example in table 2 shows the Product Outflow 
(Sale) with no corresponding Inflow of Cash (Cash Receipt). 
 
-- INSERT TABLE 2 HERE -- 

 
Even more precision can be obtained by assigning a value to the AgentValue 

variable. For instance, the example in table 3 shows all Product Outflows to Customer '0002' 
with no corresponding Inflow of Cash. 
                                                                                                                                                                               

11. The complete set of data values used in our examples is given in Geerts (1993). 
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-- INSERT TABLE 3 HERE -- 
 

The execution of these definitions generates the substance for conclusion 
materializations of items like accounts receivable and accounts payable. Actual 
implementations for these items have been specified in Geerts (1993). 

The examples in this section illustrate shareability and reusability of accounting 
concepts across functional boundaries.  Using generic accounting concepts for semantic 
information retrieval requires the REA-based semantic infrastructure, epistemological 
adequacy for the enterprise schema, and use of augmented intensional reasoning.  Lack of a 
common semantic infrastructure would make it impossible to define accounts receivable and 
accounts payable as instantiations of the more generic accounting concept claim.  The 
definition of claim illustrates the importance of epistemological adequacy.  The definition 
would not recognize accounts receivable as an instance of claim in cases where the Dual 
relationship between Sale and Cash Receipt is not explicitly represented. As a result, this 
representation cannot share the generic concept, which means that an extra procedure would 
be required to support accounts receivable, e.g., determine accounts receivable by 
subtracting the total amount of the cash receipts from customers from the total amount of 
sales made by customers.   

Augmented intensional reasoning glues components together by using the enterprise 
schema definitions as data in combination with the knowledge base containing REA 
primitives and a taxonomy of accounting concepts.  The extensional-intensional link 
supported by augmented intensional reasoning makes knowledge-based accounting systems 
as represented in figure 2 capable of semantic information retrieval. The knowledge base 
represented as the REA-based semantic infrastructure in the boxes in figure 2 is reusable in 
all AIS in different companies and different sectors that commit to the REA-based common 
semantic infrastructure.  Practically, that implies that the enterprise schema should be 
structured in terms of the REA model and that the REA classifications should be accessible 
by the intensional reasoning component. 

 
VI. CONCLUSIONS AND IMPLICATIONS FOR RESEARCH  

We have demonstrated the knowledge-intensive use of REA for knowledge sharing 
and reuse in an accounting context through augmented intensional reasoning.   Augmented 
intensional reasoning in knowledge-based accounting systems has important benefits: the 
design and implementation of AIS becomes less time consuming and less costly, some of 
the design tasks can be done by the system itself, and accounting information is derived in a 
much more general and theoretical manner.  Limitations of augmented intensional reasoning 
result primarily from the implementation technology currently available. The technology 
must be capable of explicitly recording the enterprise schema and explicitly reasoning with 
it.  Such technology is not yet, however, supported and implemented on a widespread 
basis.12   Further, the feasibility of augmented intensional reasoning depends largely on the 
                                                                                                                                                                               

12. For progress on overcoming technology constraints for REA-based systems, see Nakamura and 
Johnson (1998). 
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epistemological adequacy of the enterprise schema.  As explained in section III, 
compromised REA structures are often acceptable and even expected from a cost/benefit 
point of view.  Advances in information technology such as faster processing/storage and 
improved data capture are the main drivers for future increases in the epistemological 
adequacy of enterprise schemas.  For these reasons, progress towards economically-feasible 
implementations of knowledge-based accounting systems strongly depends on further 
advances in information technology.   

 For many of the ideas presented in this paper, much more research is needed.  Two 
possible research directions are: (1) refining and extending the accounting taxonomy of 
shareable and reusable concepts, and (2) addressing the multiple dimensions of knowledge 
sharing and reuse. 
 The extent of knowledge sharing and reuse depends largely on the depth of the 
taxonomy.  Future work could look at declarative knowledge that can be shared across a 
variety of applications.  The Resource-Event-Agent model has served as semantic 
infrastructure for different types of information systems: AIS (Gal and McCarthy 1986), 
decision support systems (Denna and McCarthy 1987), manufacturing information systems 
(Grabski and Marsh 1994), supply chain management (Haugen 1997), and value chain 
analysis (Geerts and McCarthy 1997; 1999).  In addition to accounting-oriented concepts 
such as claim, exchange, and asset, non-accounting REA-based concepts across the value 
chain, such as business process, are required.  
 Semantic interoperability is only one dimension of a common knowledge architecture. 
Researchers in the field of ontological engineering address many other dimensions including 
the heterogeneity of representation formalisms and the heterogeneity of implementation 
platforms.  To overcome such hurdles, they design declarative, expressive, semantically 
well-defined, and machine-readable grammars, which are independent of any particular data 
modeling formalism or machine-readable language (Gomez-Perez 1998).  Examples of such 
grammars are CYC (Lenat and Guha 1990) and Ontolingua (Gruber 1993).  Future research 
work could include the coding of REA primitives and the REA-based taxonomy of 
shareable and reusable concepts with such grammars. With sufficient extensions this work 
might permit REA to be considered a candidate for a full domain ontology in the manner 
specified by Guarino (1998). 
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APPENDIX 
A Knowledge-Based Accounting System Implementation 

 
1. Conceptual Schema Definition 
 
Entity Definitions. 
entity(customer). 
entity(product). 
entity(cash). 
entity(sale). 
entity(cash_receipt). 
 
Relationship Definitions. 
relationship(to,[sale,customer],r1). 
relationship(of,[cash_receipt,customer],r2). 
relationship(involved_in,[sale,cash_receipt],r3). 
relationship(of,[cash,cash_receipt],r4). 
relationship(of,[sale,product],r5). 
 
Attribute Definitions. 
attribute(customer,customer_nr). 
attribute(customer,customer_name). 
attribute(product,product_nr). 
attribute(cash,cash_type). 
attribute(sale,sale_nr). 
attribute(sale,sale_amount). 
attribute(sale,sale_date). 
attribute(cash_receipt,cash_receipt_nr). 
attribute(cash_receipt,cash_receipt_amount). 
attribute(cash_receipt,cash_receipt_date). 
 
Constraint Definitions. 
 
constraint(customer,r1,0,n). 
constraint(sale,r1,1,1). 
constraint(customer,r2,0,n). 
constraint(cash_receipt,r2,1,1). 
constraint(sale,r3,0,1). 
constraint(cash_receipt,r3,0,1). 
constraint(cash,r4,1,n). 
constraint(cash_receipt,r4,1,1). 
constraint(sale,r5,1,1). 
constraint(product,r5,0,n). 
 
Role Definitions. 
description(customer,customer_nr,id). 
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description(product,product_nr,id). 
description(cash,cash_type,id). 
description(sale,sale_nr,id). 
description(cash_receipt,cash_receipt_nr,id). 
 
2. Accounting-Specific Classifications 
 
REA Classifications. 
rea(sale,event). 
rea(cash_receipt,event). 
rea(customer,agent). 
rea(product,resource). 
rea(cash,resource). 
rea(r1,control). 
rea(r2,control). 
rea(r3,duality). 
rea(r4,stockflow). 
rea(r5,stockflow). 
rea(sale,outflow). 
rea(cash_receipt,inflow). 
 
3. REA-Based Definitions of Accounting Phenomena 
 
control(Event,Relationship,Agent) :- 
 relationship(Name,EntityList,Relationship), 
 rea(Relationship,control), 
 rea(Event,event), member(Event,EntityList), 
 rea(Agent,agent), member(Agent,EntityList). 
 
stockflow(Event,Relationship,Resource) :- 
 relationship(Name,EntityList,Relationship), 
 rea(Relationship,stockflow), 
 rea(Event,event), member(Event,EntityList), 
 rea(Resource,resource), member(Resource,EntityList). 
 
duality(IEvent,Relationship,OEvent) :- 
 relationship(Name,EntityList,Relationship), 
 rea(Relationship,duality), 
 rea(IEvent,event),   
 rea(IEvent,inflow),member(IEvent,EntityList), 
 rea(OEvent,event), 
 rea(OEvent,outflow),member(OEvent,EntityList). 
  
exchange(IResource,IEvent,Duality,OEvent,OResource,Agent) :- 
 stockflow(IEvent,_,IResource), 
 control(IEvent,_,Agent), 
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 duality(IEvent,Duality,OEvent), 
 control(OEvent,_,Agent), 
 stockflow(OEvent,_,OResource). 
 
4. Database 
value(customer,'0001',customer_nr,'0001'). 
value(customer,'0001',customer_name,'Mead'). 
value(customer,'0002',customer_nr,'0002'). 
value(customer,'0002',customer_name,'Grabski'). 
 
value(sale,'0001',sale_nr,'0001'). 
value(sale,'0001',sale_amount,1000). 
value(sale,'0001',sale_date,'07/10/95'). 
value(sale,'0002',sale_nr,'0002'). 
value(sale,'0002',sale_amount,1000). 
value(sale,'0002',sale_date,'07/11/95'). 
value(sale,'0003',sale_nr,'0003'). 
value(sale,'0003',sale_amount,1250). 
value(sale,'0003',sale_date,'07/13/95'). 
 
value(cash_receipt,'0001',cash_receipt_nr,'0001'). 
value(cash_receipt,'0001',cash_receipt_amount,1000). 
value(cash_receipt,'0001',cash_receipt_date,'07/11/95'). 
value(cash_receipt,'0002',cash_receipt_nr,'0002'). 
value(cash_receipt,'0002',cash_receipt_amount,1250). 
value(cash_receipt,'0002',cash_receipt_date,'07/12/95'). 
 
value(r1,r11,sale,'0001'). 
value(r1,r11,customer,'0001'). 
value(r1,r12,sale,'0002'). 
value(r1,r12,customer,'0001'). 
value(r1,r13,sale,'0003'). 
value(r1,r13,customer,'0002'). 
 
value(r2,r21,customer,'0001'). 
value(r2,r21,cash_receipt,'0001'). 
value(r2,r22,customer,'0001'). 
value(r2,r22,cash_receipt,'0002'). 
 
value(r3,r31,sale,'0001'). 
value(r3,r31,cash_receipt,'0001'). 
value(r3,r32,sale,'0002'). 
value(r3,r33,cash_receipt,'0002'). 
value(r3,r34,sale,'0003'). 
 
5. Supportive Definitions 
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id(Object,IdAttribute) :- description(Object,IdAttribute,id). 
 
occurrence(Object,Value) :- 
 id(Object,IdAttribute), 
 value(Object,_,IdAttribute,Value). 
  
part(Object,Relationship,RelationshipValue,Value) :- 
 occurrence(Object,Value),  
 value(Relationship,RelationshipValue,Object,Value). 
 
relpart(Object1,Object1Value,Relationship,Object2,Object2Value) :- 
 part(Object1,Relationship,RelationshipValue,Object1Value), 
 part(Object2,Relationship,RelationshipValue,Object2Value), 
 not Object1 == Object2. 
 
dualrel(Event,Dual,OtherEvent) :- duality(Event,Dual,OtherEvent). 
dualrel(Event,Dual,OtherEvent) :- duality(OtherEvent,Dual,Event). 
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FIGURE 3 
The REA Model
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FIGURE 5

Knowledge-Intensive Assistance in the Design and Operation of AIS
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FIGURE 6
Conceptual Structure of the CREASY Environment
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FIGURE 7
REA Example
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TABLE 1 
Claim Type Extension (a) 

 
** Claim Type Extension 

?- claim(Agent,AgentValue,Event,EventValue,FutureEvent). 
 

Agent  AgentValue  Event  EventValue  FutureEvent 

Intension  Extension  Intension  Extension  Intension 

customer 
vendor 
vendor 
customer 
customer 
vendor 

 '0001' 
'0001' 
'0001' 
'0001' 
'0002' 
'0002' 

 cash_receipt 
purchase 
purchase 

sale 
sale 

cash_disbursement 

 '0002' 
'0002' 
'0003' 
'0002' 
'0003' 
'0002' 

 sale 
cash_disbursement 
cash_disbursement 

cash_receipt 
cash_receipt 

purchase 
 
 



 38 

 
 

TABLE 2 
Claim Type Extension (b) 

 
** Claim Type Extension, Sale Æ Cash_Receipt. 

?- claim(customer,AgentValue,sale,EventValue,cash_receipt). 
 

Agent  AgentValue  Event  EventValue  FutureEvent 

customer 
customer 

 '0001' 
'0002' 

 sale 
sale 

 '0002' 
'0003' 

 cash_receipt 
cash_receipt 
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TABLE 3 
Claim Type Extension (c) 

 
** Claim Type Extension, Sale Æ Cash_Receipt, Customer = '0002'. 

?- claim(customer,'0002',sale,EventValue,cash_receipt). 
 
Agent  AgentValue  Event  EventValue  FutureEvent 

customer  '0002'  sale  '0003'  cash_receipt 
 
 
 
 
 
 
 
 


